
SystemC Synthesizable Subset
Version 1.4.7

March 2016

Copyright© 2016 Accellera Systems Initiative Inc. All rights reserved.
Accellera Systems Initiative, 8698 Elk Grove Blvd, Suite 1 #114, Elk Grove, CA 95624, USA.

- ii -

Notices

Accellera Systems Initiative (Accellera) Standards documents are developed within Accellera by the
Technical Committee and its Working Groups. Accellera develops its standards through a consensus
development process, approved by its members and board of directors, which brings together volunteers
representing varied viewpoints and interests to achieve the final product. Volunteers are not necessarily members
of Accellera and serve without compensation. While Accellera administers the process and establishes rules to
promote fairness in the consensus development process, Accellera does not independently evaluate, test, or
verify the accuracy of any of the information contained in its standards.

Use of an Accellera Standard is wholly voluntary. Accellera disclaims liability for any personal injury, property
or other damage, of any nature whatsoever, whether special, indirect, consequential, or compensatory, directly or
indirectly resulting from the publication, use of, or reliance upon this, or any other Accellera Standard document.

Accellera does not warrant or represent the accuracy or content of the material contained herein, and expressly
disclaims any express or implied warranty, including any implied warranty of merchantability or suitability for a
specific purpose, or that the use of the material contained herein is free from patent infringement. Accellera
Standards documents are supplied “AS IS.”

The existence of an Accellera Standard does not imply that there are no other ways to produce, test, measure,
purchase, market, or provide other goods and services related to the scope of an Accellera Standard.
Furthermore, the viewpoint expressed at the time a standard is approved and issued is subject to change due to
developments in the state of the art and comments received from users of the standard. Every Accellera Standard
is subjected to review periodically for revision and update. Users are cautioned to check to determine that they
have the latest edition of any Accellera Standard.

In publishing and making this document available, Accellera is not suggesting or rendering professional or other
services for, or on behalf of, any person or entity. Nor is Accellera undertaking to perform any duty owed by any
other person or entity to another. Any person utilizing this, and any other Accellera Standards document, should
rely upon the advice of a competent professional in determining the exercise of reasonable care in any given
circumstances.

Interpretations: Occasionally questions may arise regarding the meaning of portions of standards as they relate to
specific applications. When the need for interpretations is brought to the attention of Accellera, Accellera will
initiate reasonable action to prepare appropriate responses. Since Accellera Standards represent a consensus of
concerned interests, it is important to ensure that any interpretation has also received the concurrence of a
balance of interests. For this reason, Accellera and the members of the Technical Committee and its Working
Groups are not able to provide an instant response to interpretation requests except in those cases where the
matter has previously received formal consideration.

Comments for revision of Accellera Standards are welcome from any interested party, regardless of membership
affiliation with Accellera. Suggestions for changes in documents should be in the form of a proposed change of
text, together with appropriate supporting comments. Comments on standards and requests for interpretations
should be addressed to:

Accellera Systems Initiative
8698 Elk Grove Blvd, Suite 1 #114
Elk Grove, CA 95624
USA

Note: Attention is called to the possibility that implementation of this standard may require use of subject matter covered by
patent rights. By publication of this standard, no position is taken with respect to the existence or validity of any patent rights
in connection therewith. Accellera Systems Initiative shall not be responsible for identifying patents for which a license may
be required by an Accellera Systems Initiative standard or for conducting inquiries into the legal validity or scope of those
patents that are brought to its attention.

Accellera is the sole entity that may authorize the use of Accellera-owned certification marks and/or trademarks
to indicate compliance with the materials set forth herein.

Authorization to photocopy portions of any individual standard for internal or personal use must be granted by
Accellera Systems Initiative Inc., provided that permission is obtained from and any required fee, if any, is paid

- iii -

to Accellera. To arrange for authorization please contact Lynn Bannister-Garibaldi, Accellera Systems Initiative,
8698 Elk Grove Blvd, Suite 1 #114, Elk Grove, CA 95624, phone (916) 670-1056, e-mail lynn@accellera.org.
Permission to photocopy portions of any individual standard for educational classroom use can also be obtained
from Accellera.

Suggestions for improvements to the SystemC Synthesizable Subset are welcome. They should be sent to the
Working Group’s email reflector:

swg@lists.accellera.org

The current Working Group web page is:

www.accellera.org/activities/committees/systemc-synthesis

- iv -

Introduction

The growing popularity of SystemC for system and hardware design has spurred significant
growth in the high-level synthesis (HLS) industry in the recent past. While there are multiple
commercially available HLS tools that accept SystemC as an input language, the inherent
difference between the description of a simulation model and that of a synthesis model
presents the question of which constructs and semantics of SystemC should be supported by
these tools and how.

This standard addresses this issue by defining a subset of SystemC that will be suitable for
input to HLS tools. It is intended for use by hardware designers and HLS tool developers in a
manner that allows hardware designers to create HLS models in SystemC that will be portable
among all conforming HLS tools.

It should be noted that the intent of this version of the standard is to define a minimum subset
of SystemC for synthesis, it is not meant to restrict HLS tools’ support for syntax beyond this
subset, including additional vendor-specific design/library components, e.g., point-to-point
handshaking channels. This standard also does not define any set of tool-directives that may
be required to instruct an HLS tool on how to perform synthesis on certain constructs.

This standard is defined within the existing ISO C++ and IEEE 1666 SystemC specifications.
Hence, familiarity with these standards is presumed. Familiarity with various levels of
abstraction and their relationship with ESL (Electronic System Level) synthesis may also be
helpful in understanding this standard. A separate discussion on this topic is added as an
Annex of this standard.

This standard was defined by the Synthesis Working Group of the Accellera Systems
Initiative with participation from various HLS tool vendors and users. Below is the list of
individuals who contributed to this standard.

Participants
The following team members drove the Draft 1.4 effort:
Ashfaq Khan
Jos Verhaegh
Tony Kirke
Mike Meredith
Benjamin Carrion Schafer
Bob Condon
Alan P. Su
Andres Takach, Chair
Stuart Swan
Lucien Murray-Pitts
Yusuke Iguchi
Masachika Hamabe
Mark Johnstone
Frederic Doucet

The following team members drove the Draft 1.1 ~ 1.3 effort:
Mike Meredith
Benjamin Carrion Schafer

- v -

Alan P. Su
Andres Takach, Chair
Jos Verhaegh

The following team members drove the Draft 1.0 effort:
Eike Grimpe
Rocco Jonack
Masamichi Kawarabayashi, past Chair
Mike Meredith
Fumiaki Nagao
Andres Takach
Yutaka Tamiya
Minoru Tomobe

- vi -

Contents
INTRODUCTION .. IV

1 OVERVIEW .. 1

1.1 PURPOSE .. 1
1.2 SCOPE ... 1
1.3 TERMINOLOGY .. 1
1.4 CONVENTIONS .. 3
1.5 ISOC++ IMPLEMENTATION COMPLIANCE (ISOC++ 1.4) 3
1.6 SYSTEMC LRM COMPLIANCE ... 4

2 TRANSLATION UNITS ... 5

2.1 TRANSLATION UNITS AND THEIR ANALYSIS.. 5
2.2 PRE-PROCESSING DIRECTIVES ... 5

3 MODULES .. 6

3.1 MODULE DEFINITIONS .. 6
3.2 DERIVING MODULES .. 9
3.3 MODULE HIERARCHY .. 9

4 PROCESSES ... 10

4.1 SC_METHOD .. 10
4.2 SC_THREAD AND SC_CTHREAD ... 11

5 PREDEFINED CHANNELS, INTERFACE PROPER AND PORTS 15

5.1 PREDEFINED CHANNELS ... 15
5.2 PORTS ... 15
5.3 SC_EVENT ... 16

6 TYPES ... 17

6.1 FUNDAMENTAL TYPES .. 17
6.2 COMPOUND TYPES .. 20
6.3 SYSTEMC DATATYPES ... 20

7 DECLARATIONS ... 30

7.1 SPECIFIERS ... 30

8 DECLARATORS ... 32

8.1 TYPE NAMES ... 32
8.2 AMBIGUITY RESOLUTION ... 32
8.3 KINDS OF DECLARATORS ... 32
8.4 FUNCTION DEFINITION ... 32
8.5 INITIALIZERS... 33

9 EXPRESSIONS ... 34

9.1 FUNCTION CALL .. 34
9.2 EXPLICIT TYPE CONVERSION ... 34
9.3 TYPEID .. 35
9.4 UNARY EXPRESSIONS AND OPERATORS ... 35

- vii -

9.5 POINTER-TO-MEMBER OPERATORS .. 36
9.6 MULTIPLICATIVE, ADDITIVE, SHIFT, RELATIONAL, EQUALITY, AND
ASSIGNMENT OPERATORS .. 36
9.7 BITWISE AND LOGICAL AND/OR/XOR OPERATORS 36
9.8 CONDITIONAL OPERATOR.. 36
9.9 COMMA OPERATOR .. 36

10 STATEMENTS .. 37

10.1 LABELED STATEMENT ... 37
10.2 COMPOUND STATEMENT ... 37
10.3 SELECTION STATEMENTS .. 37
10.4 ITERATION STATEMENTS ... 37
10.5 JUMP STATEMENTS ... 37
10.6 DECLARATION STATEMENT ... 37
10.7 EXCEPTION HANDLING STATEMENTS ... 38

11 NAMESPACES .. 39

11.1 NAMESPACE DEFINITION ... 39
11.2 NAMESPACE ALIAS .. 39
11.3 THE USING DECLARATION ... 39
11.4 USING DIRECTIVE ... 39

12 CLASSES .. 40

12.1 CLASS NAMES ... 40
12.2 CLASS MEMBERS ... 40
12.3 MEMBER FUNCTIONS .. 40
12.4 STATIC MEMBERS .. 40
12.5 UNIONS .. 40
12.6 BIT-FIELDS ... 40
12.7 NESTED CLASS DECLARATIONS .. 40
12.8 LOCAL CLASS DECLARATIONS .. 40
12.9 NESTED TYPE NAMES .. 40
12.10 DERIVED CLASSES ... 41
12.11 MEMBER ACCESS CONTROL ... 41
12.12 SPECIAL MEMBER FUNCTIONS ... 41

13 OVERLOADING .. 43

13.1 OVERLOADABLE DECLARATIONS ... 43
13.2 DECLARATION MATCHING ... 43
13.3 OVERLOAD RESOLUTION ... 43
13.4 ADDRESS OF OVERLOADED FUNCTION ... 44
13.5 OVERLOADED OPERATORS ... 44
13.6 BUILT-IN OPERATORS .. 44

14 TEMPLATES ... 45

14.1 TEMPLATE PARAMETERS ... 45
14.2 NAMES OF TEMPLATE SPECIALIZATIONS .. 45
14.3 TEMPLATE ARGUMENTS .. 45
14.4 TYPE EQUIVALENCE .. 45

- viii -

14.5 TEMPLATE DECLARATIONS .. 45
14.6 NAME RESOLUTION ... 46
14.7 TEMPLATE INSTANTIATION AND SPECIALIZATION .. 47
14.8 FUNCTION TEMPLATE SPECIALIZATIONS .. 47

15 LIBRARIES ... 48

15.1 STANDARD C AND C++ LIBRARIES .. 48
15.2 SYSTEMC FUNCTIONS AND TYPES ... 48

ANNEX A LEVELS OF ABSTRACTION IN SYSTEMC DESIGN AND
INTRODUCTION TO HIGH-LEVEL SYNTHESIS (INFORMATIVE) 50

A.1 INTRODUCTION TO ABSTRACTION LEVELS ... 50
A.2 INTRODUCTION TO HIGH-LEVEL SYNTHESIS... 51
A.3 VISION FOR HIGH-LEVEL DESIGN ... 52
A.4 ABSTRACTION LEVEL DETAILS .. 54
A.4.1 FUNCTION LEVEL .. 54
A.4.1.1 FUNCTION LEVEL: ALGORITHM SPECIFICATION 54
A.4.1.2 FUNCTION LEVEL: PARTITIONING INTO COMMUNICATING TASKS 55
A.4.2 ARCHITECTURE LEVEL .. 56
A.4.3 TRANSACTION LEVEL MODELING .. 57
A.4.4 IMPLEMENTATION LEVEL .. 58
A.4.4.1 IMPLEMENTATION GATE LEVEL ... 58
A.4.4.2 IMPLEMENTATION RT LEVEL ... 58
A.4.4.3 IMPLEMENTATION BEHAVIORAL-LEVEL ... 59

ANNEX B GLOSSARY (INFORMATIVE) ERROR! BOOKMARK NOT
DEFINED.
ANNEX C REFERENCES .. 60

- 1 -

1 Overview

1.1 Purpose
In this standard document, the Synthesis Working Group (SWG) of the Accellera Systems
Initiative has defined a subset of SystemC that is appropriate for synthesis. This is intended to
be useful for hardware designers to accelerate the modeling process with SystemC and for
EDA tool developers to develop SystemC compliant high-level synthesis (HLS) tools. The
synthesizable subset of SystemC will be defined within the existing ISO C++ and IEEE Std
1666 SystemC specifications. Hence, familiarity with these standards is presumed.

There are a wide variety of resources available to assist users in modeling with SystemC,
including the IEEE Std 1666 Language Reference Manual (LRM), user guides of the HLS
tools, and a number of books on SystemC modeling. This document is intended to fill a gap
by defining a standard for creating synthesizable hardware description in SystemC, allowing a
smooth transition between abstract modeling in SystemC and synthesizable description.

1.2 Scope
The synthesizable subset defines the syntactic elements in ISO C++, as described in ISO/IEC
14882:2003 [1] and SystemC, as described in IEEE Std 1666-2011 [2], that are appropriate
for use in SystemC code intended for input to HLS tools. In some cases, there are references
to ISO/IEC 14882:2011 [3] for very specific items that were widely available before they
were standardized in 2011. For example, the type long long and the behavior that division
truncates towards zero (0). The intent of this version of the standard document is to describe a
minimum initial subset which can be supported by tools. It is not meant to restrict synthesis
support for syntax beyond this subset.

The synthesizable subset of SystemC currently covers the register transfer level (RTL) and
the behavioral level. More abstraction levels are also discussed in this document to provide
context.

1.3 Terminology

1.3.1 Base Standards
The following standards contain provisions which, through reference in this text, are included
in this standard. At the time of publication, the editions indicated were valid.

• ISO/IEC 14882:2003, Programming languages – C++, hereinafter called ISOC++.
• ISO/IEC 14882:2011, Programming languages – C++, hereinafter called ISOC++11.

- IEEE Std1666-2011, SystemC, hereinafter called the SystemC LRM.

1.3.2 Word usage
The word shall indicates mandatory requirements strictly to be followed to conform to the
standard and from which no deviation is permitted (shall equals is required to; shall not
equals is not permitted to).

- 2 -

The word should indicates a certain course of action is preferred, but is not a mandatory
requirement; or (in the negative form, should not) that a certain course of action is permitted,
but such usage is discouraged (should equals is recommended that).

The word may indicates a course of action permissible within the limits of the standard (may
equals is permitted).

The word application is a C++ program written by an end user that uses the SystemC, TLM-1,
and TLM-2.0 class libraries, i.e., it uses classes, functions, or macros defined in the SystemC
LRM.

The word implementation means any specific implementation of the full SystemC, TLM-1,
and TLM-2.0 class libraries, as defined in the SystemC LRM, of which only the public
interface need be exposed to the application.

The word design is used to mean a SystemC design written by an end user that describes
hardware in conformance with this standard.

A synthesis tool is said to accept a SystemC construct if it allows that construct to be a legal
input; it is said to interpret the construct (or to provide an interpretation of the construct) if it
accepts that construct and produces a corresponding synthesis result.

The word synthesis tool is used to mean a high-level synthesis tool that accepts and interprets
a design in conformance with this standard.

The term call is taken to mean call directly or indirectly. Call indirectly means call an
intermediate function that in turn calls the function in question, where the chain of function
calls may be extended indefinitely. Similarly, called from means called from directly or
indirectly.

The term class is used to cover the C++ keywords class or struct.

Except where explicitly qualified, the term derived from (or inherited from) is taken to mean
derived directly or indirectly from a class. Derived indirectly from means derived from one or
more intermediate base classes.

A synthesis refinement in this document imposes a restriction or alteration upon some other
standard (e.g., the SystemC LRM or the ISOC++ standard) in order to subset the otherwise
supported methods to describe behavior to a set that can be implemented in hardware.

The word deprecated is used to describe a feature that is superseded by a better, safer, easier
to use alternative. Use of the deprecated feature is strongly discouraged and future standards
may make such use illegal.

1.3.3 Construct Categories
The constructs in this standard shall be categorized as:

Supported: A synthesis tool shall interpret the construct.

- 3 -

Ignored: A synthesis tool shall accept the construct, but may choose not to interpret the
construct. The mechanism, if any, by which a synthesis tool notifies (warns) the user of such
constructs is not defined in this standard.

Not Supported: A synthesis tool may choose not to accept the construct. The behavior of the
synthesis tool upon encountering such a construct is not defined in this standard. For example,
a synthesis tool may choose to fail upon encountering such a construct; alternatively, it may
choose to accept/interpret such a construct. It should be noted that even if a synthesis tool
accepts/interprets some of the constructs that are Not Supported, a design that uses such
constructs runs the risk of losing portability. However, it is also possible that, in a future
revision of this standard, some of the constructs that are Not Supported now will be
Supported.

Supported with Restrictions: A synthesis tool shall interpret the construct with certain
restrictions. This means, instances of the construct which are within the restrictions, as set
forth by this standard, are Supported; while instances that violate these restrictions are either
Ignored or Not Supported. Unless explicitly categorized as Ignored, the violating instances
are Not Supported. A construct that is Supported with Restrictions is also said to have
Restricted Support.

1.4 Conventions
This document uses the following conventions:

a) The body of the text of this standard uses italics to denote SystemC or C++ reserved
words (e.g., sensitive and SC_MODULE).

b) The body of the text of this standard also uses italics underlined to highlight
definitions (e.g., application or design) or to visually reinforce key terms (e.g., shall,
should not, and synthesis refinement).

c) The body of the text of this standard uses bold italics to visually reinforce construct
categories (e.g., Supported and Ignored).

d) The text of the SystemC examples and code fragments is represented in a fixed-
width font.

e) An outlining box with the title “NOTE” provides an informative expansion of certain
key concepts. They are intended to assist in understanding of a construct, but are not
intended as a restriction or enhancement of a synthesis tool

f) The examples that appear in this document under "Example:" are for the sole purpose
of demonstrating the syntax and semantics of SystemC for synthesis. It is not the
intent of this standard to demonstrate, recommend, or emphasize coding styles that are
more (or less) efficient in generating an equivalent hardware representation. In
addition, it is not the intent of this standard to present examples that represent a
compliance test suite or a performance benchmark, even though these examples are
compliant to this standard (except as noted otherwise).

1.5 ISOC++ Implementation Compliance (ISOC++ 1.4)
The ISOC++ Section 1.4 Implementation Compliance applies to the synthesis subset.

1.5.1 Implementation-defined behavior (ISOC++ 1.3.5)
Simulation of the design is based on C++ compilers on specific computer platforms. In most
cases, such platforms have converged on certain default implementation-defined behaviors

- 4 -

and synthesis tools are required to either adhere to those behaviors or provide warnings to the
effect that a different implementation-defined behavior is being followed.
An example of an implementation-defined behavior is the bit-width of fundamental integer
types.

1.5.2 Undefined behavior (ISOC++ 1.3.12)
The presence of undefined behavior may lead to differences between simulation and synthesis
and differences in results from different synthesis tools. Unless this standard provides a
synthesis refinement that provides a definition, such undefined behavior is Not Supported
In some cases, undefined behavior is assumed to be not present in the design. One specific
example is division by zero (0). Synthesis tools may assume that such a condition will not be
present during simulation of the design and treat such a condition as a don’t care.

1.5.3 Unspecified behavior (ISOC++ 1.3.13)
The presence of unspecified behavior may lead to differences between simulation and
synthesis results and differences in results from different synthesis tools. An example is the
order of evaluation of arguments to a function is not specified. In ISOC++, the
implementation is not required to document which behavior occurs.

1.6 SystemC LRM Compliance
This section describes some general terms that are used in the SystemC LRM that have some
similarities with terms used in ISOC++ as described in Section 1.5.

1.6.1 Implementation-defined (SystemC LRM 3.2.1)
The description in Section 1.5.1 applies. In general, most of the implementation-defined items
in the SystemC LRM do not affect synthesis. One item that does affect synthesis is the type
for limited precision (SystemC LRM 7.2.2). In that case, this standard only supports one
implementation as specified in Section 6.3.

1.6.2 Undefined
The description in Section 1.5.2 applies when the word undefined is used in the context of the
behavior not being defined.

1.6.3 Error
The word error is sometimes used interchangeably with the word undefined in the SystemC
LRM. In many cases, an error refers to a compilation or simulation error. Synthesis tools
assume that such conditions will not be present and treat such condition as a don’t care, unless
the synthesis tools are able to prove that the error is present, in which case they may issue an
error appropriately.

- 5 -

2 Translation units

2.1 Translation units and their analysis
The text of a design is, as described by ISOC++ Section 2, kept in units called source files. A
source file together with all included sources, less any lines skipped through preprocessor
macros, is known as a translation unit.

A translation unit shall be specified using the basic source character set, as described by
ISOC++ Section 2. However, the trigraph sequences, as described by ISOC++ section 2.3,
and alternative tokens are Not Supported. Furthermore, instance names using Universal-
Character-Name as described in ISOC++ Section 2 and ISOC++ Annex E are synthesis tool-
dependent and, therefore, Not Supported.

Using multiple translation units to describe a design is Supported. This standard, however,
does not specify how a user will provide the translation-unit information to the synthesis tool.

The use of the keyword extern to refer to a declaration in a different scope within the same
translation unit or in a different translation unit is Supported. However, the use of libraries
(pre-compiled binary files) is Not Supported, and a design shall contain all the source files
required for synthesis (with the exception of SystemC implementation and C/C++ native
library files).

The use of extern string-literals for linkage specification (e.g., extern "C", extern
"C++") is Not Supported (ISOC++ 7.5).

The functions main and sc_main are Ignored.

2.2 Pre-processing directives
The full set of C/C++ preprocessing directives is Supported (refer to Clause 16 in [3]).
A synthesis tool shall recognize pragma directives (#pragma). It may ignore or process
pragma directives.

A Synthesis tool shall predefine the following macro names:

1. __STDC__ : The value is implementation-dependent.
2. __cplusplus : The value is implementation-dependent.
3. SC_SYNTHESIS : The version of the synthesis subset, in a year and month

format such as 201601L.
4. __SYNTHESIS__: The value is implementation-dependent.

NOTE
The expected use of the __SYNTHESIS__ and SC_SYNTHESIS macros is to guard non-
synthesizable code. The version contained in SC_SYNTHESIS is meant to select different
versions of the same behavior that depend on updates to the synthesis subset.

- 6 -

3 Modules
This section specifies the core SystemC language subset used in a design for modeling a
hardware element. In this document sc_module and module are used interchangeably. A
single hardware element is represented by a module and a system is described by creating a
hierarchy of modules stemming from a parent module.

This section does not limit the optimizations that can be performed on the model, the scope of
which depends on the synthesis tool itself. Irrespective of the level of optimizations
performed, the result of the synthesis should have the same functionality as the input model,
but may have different sequential timed behavior.

3.1 Module definitions
A SystemC module, as defined in the SystemC LRM definition, may contain the port-level
interfaces, any required internal storage elements, and any required behavior for that module.

The Supported possibilities for module definition are as follows.

• Use of the SC_MODULE macro;
• Derivation of a class from sc_module.

In addition to the above, templated module definition has Restricted Support. The restriction
is that, for the top-level module, only modules that have been instantiated (as defined in
ISOC++ 14.7.1 and 14.7.2) or have been explicitly specialized (as defined in ISOC++ 14.7.3)
are Supported. For non-top-level modules, templated module definition is Supported.

Template specialization and partial-specialization of modules is also Supported.

NOTE
In C++, template classes and functions are not instantiated until they are implicitly
instantiated (as defined in ISOC++14.7.1) or are explicitly instantiated (as defined in ISOC++
14.7.2).

In C++, template classes and functions can be explicitly specialized (as defined in ISOC++
14.7.3) using the “template <>” declaration (i.e., the class is fully specialized).

Examples of implicit and explicit instantiations and explicit specialization are shown below.
The most common form for synthesis is the use of implicit instantiation for submodules and
implicit instantiation of the template top-level module in the testbench (from main or
sc_main). If the testbench is not present or is excluded from analysis, the use of an explicit
instantiation would be indicated. Note that explicit specializations are less common and only
indicated when there is an advantage in providing a specialized version of the module (the
example below is not an illustration of such a case).

template <int N>
SC_MODULE (design) {
 sc_in<int> a;
 sc_out<int> c;

- 7 -

3.1.1 Selecting the top of a design hierarchy
This standard does not define any method for specifying the top-level module(s) of a design.
The mechanisms for specifying the top-level module(s) of a design are synthesis tool
dependent.

3.1.2 Module member specification
The module member specification contains a set of member declarations and definitions.
Any valid and legal SystemC macros are Supported.

3.1.3 Module declarative items

3.1.3.1 Module special functions
Module constructors are Supported. Module destructors are Ignored. The other two special
member functions, namely the Copy Constructor and the Assignment Operator, as defined in
ISO C++ Section 12, are disabled for sc_module by the SystemC LRM 5.2.2, hence, they are
disabled for sc_module.

3.1.3.2 Communication between processes through module member variables
Within a module, processes shall only communicate with each other through member
variables which are of type sc_signal. Non-const variables which are not of sc_signal type
shall be read and written by only one process.

3.1.3.3 Communication between modules

 void add() { c = a + N;}

 SC_CTOR(design) : a("a"), c("c") {
 SC_METHOD(add);
 sensitive << a;
 }
};

template class design<5>; // EXPLICIT INSTANTIATION

int main() {
 design<7> x; // IMPLICIT INSTANTIATION

}

template<> SC_MODULE(design<3>) { // EXPLICIT SPECIALIZATION
 sc_in<int> a;
 sc_out<int> c;

 void add() { c = a + 3; }

 SC_CTOR(design) : a("a"), c("c") {
 SC_METHOD(add);
 sensitive << a;
 }
};

- 8 -

Communication between modules shall only be through sc_in and sc_out, which are to be
bound to sc_signals.

Calling the binding function for a port that is a data member of a module from the constructor
of the parent to the module is Supported.

Other cases of access to module non-const data members from outside the module is Not
Supported.

3.1.3.4 sc_port, sc_export, sc_signal, and other channels

 Instantiation of a sc_port or directly deriving from sc_port in a design is Not
Supported.

 Instantiation of a sc_export or directly deriving from sc_export in a design is Not
Supported.

The specialized ports and channels are described in Section 5 of this standard.

NOTE
Ports represent the externally visible interface to a module and are used to transfer data into
and out of the module. Specialized ports using the sc_in and sc_out construcst are used to
describe this pin level description at the module boundary.

Signals can be used to interface between processes and modules. Signals are declared using
the sc_signal construct.

3.1.3.5 Module constructor
Module constructor declaration through the use of the SC_CTOR macro or explicit declaration
of a constructor special function either with no argument or a single argument for the module
name are Supported. Explicit declaration of a constructor special function with more than
one argument or an argument that is not a module name is Not Supported.

Every module declaration shall contain one declaration or definition of a constructor member
function. Multiple constructor declarations or definitions are Not Supported.

Within a constructor of an SC_MODULE and functions called from the constructor, the
following operations are Supported to construct module hierarchy:

• Constructor calls of sc_in/sc_out/sc_signal/SC_MODULE.
• Initialization of pointers to SC_MODULEs with SC_MODULE objects allocated using

the new operator.
• Port bindings between sc_signal/sc_in/sc_out using bind() and operator().
• Creation of processes using SC_THREAD/SC_CTHREAD/SC_METHOD and

sensitivity specification as described in Section 4.

In addition, initialization of references and constant data members in the constructor
initializer list is Supported.

- 9 -

In contrast to normal C++ practice, writing to data members other than initialization of
SC_MODULE pointers, signals, or ports of a module from inside the SC_MODULE
constructor are Not Supported. Overwriting a variable of type pointer to sc_module after
initialization is Not Supported.

NOTE
Initialization of an SC_MODULE data member should be performed within the reset portion
of an SC_THREAD, SC_CTHREAD, or sequential SC_METHOD in order to have the
initialization be performed at reset time

3.2 Deriving modules
Deriving modules, as defined in SystemC LRM 5.2.3, is Supported.

Examples:

 // Deriving a module:

SC_MODULE(BaseModule) {
 sc_in< bool > reset;
 sc_in_clk clock;
 BaseModule (const sc_module_name& name_)
 : sc_module(name_)
 {}
};

class DerivedModule : public BaseModule {
void newProcess();
SC_HAS_PROCESS(DerivedModule);
DerivedModule(sc_module_name name_)
: BaseModule(name_) {

 SC_CTHREAD(newProcess, clock.pos());
 reset_signal_is(reset, true) ;
}

};

3.3 Module hierarchy
Module hierarchy, as defined in SystemC LRM 5.3.4, is Supported.

Port binding, as described in SystemC LRM 4.1.3 is Supported. Note that positional binding
(as described in SystemC LRM Annex C as a deprecated feature) is Not Supported.

- 10 -

4 Processes
The use of the SC_THREAD, SC_CTHREAD, and SC_METHOD constructs to create
processes is Supported with Restrictions. The use of sc_spawn() to create processes is Not
Supported.

None of the uses of sc_process_handle are synthesizable, hence such usage is Not Supported.
Consequently, the use of suspend(), resume(), enable(), disable(), kill(), reset(), and throw_it()
is also Not Supported.

4.1 SC_METHOD
In a SystemC design, the body of an SC_METHOD is executed whenever its sensitivity
condition is met. The logic inferred by a synthesis tool for an SC_METHOD depends on both
the sensitivity condition and the form of the SC_METHOD body.

As a synthesis refinement, all paths through an SC_METHOD shall either be combinational or
sequential. An SC_METHOD with a mix of combinational and sequential paths is Not
Supported.

For SC_METHOD, reset_signal_is and async_reset_signal_is are Not Supported. Modeling
of reset behavior is done using the coding styles described below.

4.1.1 Combinational SC_METHOD
An SC_METHOD can used to describe combinational logic, with the SC_METHOD sensitive
to any change in the signals in its sensitivity list.

As a synthesis refinement, the sensitivity list here shall be static and include all signals that
are read in the body of the method. This is done to avoid accidental latching, which would
lead to synthesis and simulation mismatches.

// Example of combinational SC_METHOD

SC_METHOD(comb); sensitive << a << b << c;

void comb() { f.write(a.read()+b.read()+c.read()); }

4.1.2 Sequential SC_METHOD
The body of a sequential SC_METHOD shall consists of two mutually exclusive branches
based on the clock and reset conditions.

4.1.2.1 Sequential SC_METHOD with synchronous reset

A sequential SC_METHOD with synchronous reset shall be sensitive to only a positive or
negative edge of a clock signal.

// Example of sequential SC_METHOD with synchronous reset:

SC_METHOD(dff); sensitive << clk.pos();

- 11 -

void dff() {
 if (rst == 0) {
 // reset signals
 } else {
 // assign signals
 }
}

4.1.2.2 Sequential SC_METHOD with asynchronous reset
A sequential SC_METHOD with asynchronous reset shall be sensitive to only a positive or
negative edge of a clock signal and a positive or negative edge of a reset signal.

// Example of sequential SC_METHOD with asynchronous reset

SC_METHOD(dff); sensitive << clk.pos() << rst.neg();

void dff() {
 if (rst == 0) {
 // reset signals
 } else {
 // assign signals
 }
}

4.2 SC_THREAD and SC_CTHREAD
SystemC allows the usage of the SC_THREAD and SC_CTHREAD macros to create
unspawned processes which run from the start of simulation until the end of simulation.

SC_CTHREAD and SC_THREAD are Supported with Restrictions. They are Supported, as
specified in the SystemC LRM, when the following restrictions regarding the process
sensitivity and process body are met (in addition to the other restrictions mentioned
throughout this standard, e.g., regarding break/continue/goto statements).

NOTE
In earlier versions of SystemC, SC_THREAD and SC_CTHREAD differed in their reset
behavior. Currently, there are minor syntax differences between the two, but for synthesis
purposes, they have the same expressiveness.

4.2.1 Clock and Reset
The sensitivity of the process shall be specified in the constructor of the SC_MODULE
enclosing the process. A process shall be statically sensitive to exactly one clock edge and
shall have at least one reset specification. A process may have at most one synchronous reset
specification and at most one asynchronous reset specification. Different SC_(C)THREADs
may be sensitive to different clocks and resets, i.e., an SC_MODULE may contain multiple
clocks.

The use of reset_signal_is and async_reset_signal_is to specify reset sensitivity is
Supported.

SC_THREAD example:

- 12 -

SC_THREAD(thread_process);
sensitive << clk.pos();

 async_reset_signal_is(rst, false);// active low asynchronous reset

SC_CTHREAD example:

SC_CTHREAD(thread_process, clk.pos());
 async_reset_signal_is(rst, false);// active low asynchronous reset

4.2.2 Thread process body
In a SystemC application, it is a common coding idiom to include an infinite loop containing
a call to the wait() function within a thread process in order to prevent the process from
terminating prematurely, at the same time allowing co-operative pre-emption during
simulation by suspending the process. The thread process body of a design shall also follow
this structure. Among the available constructs to suspend a process, a design shall only use a
call to wait(), where the wait condition is the clock edge to which the thread process is
sensitive, as specified in the module constructor. That is, the only Supported waits are the
following.

• wait()
• wait(int): where the integer argument is statically determinable.

Other forms of suspending a thread process are Not Supported.

The behavior of a thread process consists of reset behavior, which executes on reset, and
operational behavior, which executes after reset.

The body of the thread process in a design shall follow the form:

[<optional reset behavior>]
[<optional operational behavior>]
<infinite loop> subject to the restrictions below

The reset and operational behavior shall be separated by a call to the wait() function. Any
behavior encountered in the thread process prior to encountering the first call to the wait()
function shall be considered by the synthesis tool as reset behavior. Any behavior encountered
in the thread process after encountering the first call to the wait() function shall be considered
by the synthesis tool as operational behavior.

The first call to the wait() function may occur before the infinite loop, or it may occur within
the infinite loop. In the case where the first call to the wait() function occurs within the
infinite loop, the behavior within the loop body prior to the first call to the wait() function
shall be considered by the synthesis tool to be both reset behavior and operational behavior.

Multiple calls to the wait() function may occur within the body of the thread process, both
before the infinite loop, and within the body of the infinite loop. The behavior encountered
before the first call to the wait() function shall be the reset behavior; any behavior
encountered after the first call to the wait() function shall be the operational behavior.

- 13 -

Within the body of the thread process, the first call to the wait() function shall be statically
determinable. The first call to the wait() function may be within conditional constructs only
when the condition is statically determinable (e.g., in the case where the condition is based on
a template parameter). Subsequent calls to the wait() function (in the operational behavior)
may occur within conditional constructs.

Reset values shall be statically determinable constants.

The following forms of infinite loop are Supported, others are Not Supported.

while(1) { }
while(true) { }
do { } while (1);
do { } while (true);
for (; ;) { }

NOTE
Example of SC_THREAD/SC_CTHREAD body:

void dut::thread_process() {
 // Reset behavior goes here
 wait(); // This wait separates reset behavior from
 // operational behavior.
 // You can operational behavior here
 while(1) { // Repeated operational behavior.
 // The infinite loop prevents the operational behavior
 // from terminating.
 wait(); // This wait allows suspension of the process.
 }
}

void dut::thread_process() {
 // Reset behavior goes here
 // You cannot have operational behavior here, because there
 // is no wait() to separate them from reset behavior.
 while(1) {
 // The infinite loop prevents the process from terminating
 // Behavior here is both reset behavior and operational
 // behavior.
 wait(); // This wait separates reset behavior from
 // operational behavior and also allows suspension
 // of the process.
 //operational behavior
 }
}

NOTE
Reset behavior is behavior that is executed when reset is asserted. As Section 3.1.3.5
indicates, writing to data members, signals, or ports of a module from inside the
SC_MODULE constructor is not reset behavior. Default constructors of data members of the
SC_MODULE that initialize the data members (e.g., the default constructor for sc_int
initializes the value to 0), are not part of the reset behavior. If the behavior of the design
depends on those non-reset initial values, then synthesis results might differ from simulation

- 14 -

results.

Example:

class X {
public:
 X() {
 m_1 = 0;
 }
private:
 int m_1;
};

class XChild : public X {
};

SC_MODULE(Module) {
 sc_signal< X > xSig;
 sc_signal< XChild > xChildSig;
 sc_in_clk clk;
 sc_in<bool> rst;

 SC_CTOR(Module)
 : xSig("xSig"), // Warning! Synthesis will Not invoke default ctor for X.
 xChildSig("xChildSig") //Warning! Synthesis will Not invoke
 //default constructor for XChild.
 {
 SC_CTHREAD(proc, clk.pos());
 reset_signal_is(rst, true);
 }

 void proc() {
 // Reset clause
 X x_tmp; // OK. Invoke default constructor for X.
 xSig = x_tmp; // OK. Initialize xSig with x_tmp.
 xChildSig = XChild(); // OK. Initialize xChildSig by the
 / / default constructor.
 wait();

 // Main loop
 while (true) {
 ...
 }
 }
};

- 15 -

5 Predefined channels, interface proper and ports

5.1 Predefined Channels

5.1.1 sc_signal
sc_signal has Restricted Support. Use of a sc_signal with the WRITER_POLICY defaulted or
explicitly set to SC_ONE_WRITER is Supported. Use of a sc_signal with the
SC_MANY_WRITERS policy is Not Supported.

Furthermore, only the following member functions are Supported.

void write(const T&)
const T& read()
sc_signal(), sc_signal(string), and sc_signal(signal)
operator= (const T&)
operator= (const sc_signal<T,WRITER_POLICY>&)

Arrays of sc_signal are Supported.

5.1.2 Resolved Channels
Resolved types are Not Supported. This includes sc_signal_resolved, sc_in_resolved,
sc_inout_resolved, sc_out_resolved, sc_signal_rv, sc_in_rv, sc_inout_rv, and sc_out_rv.

5.1.3 Other Channels
The following list of pre-defined SystemC channels are also Not Supported:

sc_buffer, sc_clock, sc_mutex, sc_semaphore, sc_fifo, and sc_event_queue.

NOTE
While sc_clock channel is not supported, clock ports are supported as specified in Section
5.2.1.

5.2 Ports
The pre-defined specialized port classes are Supported so blocks in a SystemC hierarchy can
communicate through convenient access to member functions of the pre-defined SystemC
primitive channels.

5.2.1 sc_in, sc_out, and sc_inout
sc_in<T> and sc_out<T> for T being any synthesizable type are Supported.
sc_in<bool>, and sc_in_clk are all Supported.
sc_in<sc_dt::sc_logic> is Not Supported.
sc_inout<T> is Not Supported.

Furthermore, for sc_in<T>, only the following member functions are Supported.

sc_in() and sc_in(const char*)
const T& read() const
operator const T& () const
void bind(const sc_signal_in_if<T>&)

- 16 -

void operator() (const sc_signal_in_if<T> &)
void bind(sc_port< sc_signal_in_if<T>, 1> &)
void operator() (sc_port< sc_signal_in_if<T>, 1> &)
void bind(sc_port< sc_signal_inout_if<T>, 1> &)
void operator() (sc_port< sc_signal_inout_if<T>, 1> &)

For sc_in<bool>, in addition to the above, the following further member functions are
Supported.

sc_event_finder& pos() const
sc_event_finder& neg() const

Furthermore, for sc_out<T>, only the following member functions are Supported.

sc_out() and sc_out(const char*)
const T& read() const
operator const T& () const
void write(const T&)
operator= (const T&)
operator= (const sc_signal_in_if<T >&)
operator= (const sc_port< sc_signal_in_if<T >, 1> &)
operator= (const sc_port< sc_signal_inout_if<T >, 1> &)
operator= (const sc_out< T> &)
void bind(const sc_signal_inout_if<T>&)
void operator() (const sc_signal_inout_if<T> &)

For sc_out<bool>, in addition to the above, the following further member functions are
Supported.

sc_event_finder& pos() const
sc_event_finder& neg() const

Arrays of ports are Supported.

Inheriting from the specialized port types is Not Supported.

5.3 sc_event
sc_event in a design is Not Supported.

- 17 -

6 Types
SystemC types are comprised of both the native C++ types and the additional SystemC types.

There are two kinds of native C++ types: fundamental types and compound types. Types
describe objects, references, or functions.

NOTE
Alignment requirements mentioned in ISOC++ 3.9 are not relevant for synthesis.

Synthesis may choose alternative data representations for internal objects (not part of the
interface of the design) provided the I/O behavior of the design is unchanged. For example,
the bit-width of an integer variable could be reduced based on the range of the variable or its
representation could be changed from two’s complement to sign-magnitude.

6.1 Fundamental Types
Fundamental types are comprised of integer types, floating-point types, and void.

6.1.1 Integer Types
The following integer types, as specified in ISOC++ and ISOC++11 3.9.1, are Supported:

• bool
• unsigned char, signed char, char
• unsigned short, signed short
• unsigned int, signed int
• unsigned long, signed long
• unsigned long long, signed long long (ISOC++ 11)

The integer type wchar_t is Not Supported.

NOTE
ISOC++ 3.9.1 specifies that it is implementation defined whether a char object can hold
negative values; GNU G++ can support either mode through use of the “-
fsigned_char/unsigned_char” switch. The synthesis tool vendor is likely to choose the mode
that best meets the architecture for which their simulation model was built in order to achieve
consistent results between simulation and synthesis models.

ISOC++ 3.9.1 also specifies that plain char, signed char, and unsigned char are three distinct
types. Even if a particular implementation allows a char to hold negative values, it is not the
same type as a signed char.

6.1.1.1 Literals
Integer and Boolean literals, as specified in ISOC++ 2.13.1 and 2.13.5, are Supported.

Character literals as described in ISOC++ 2.13.2 have Restricted Support. The L prefix
denoting wide character support is Not Supported.

- 18 -

For synthesis, if the numerical value of the char literal has an effect on functionality (the
exception being comparing chars for equality), characters shall be assumed to be encoded in
the ASCII character set. This is a synthesis refinement over ISOC++ 2.13.2 and 2.13.4, which
allows alternative execution character sets (ISOC++ Section 2.2, Paragraph 3).

6.1.1.2 Representation and Bit Sizes
Two’s complement integer representations are Supported. One’s complement and sign
magnitude integer representations are Not Supported.

A synthesis tool shall have mechanisms to support the I/O observable behavior implied by bit-
widths and representation for the computer platforms as indicated in the last column of the
table below. It shall warn in case the choice of bit-width or the representation is not consistent
with the definition for the computer platform.

Table 1: Bit Sizes for Integer Types

Integer
Type

Relative
Requirement

Current Compilers
Signed

Representation
Bit Width

(un)signed char, char two’s complement 8
(un)signed short bits(short) ≥ bits(char) two’s complement 16
(un)signed int bits(int) ≥ bits(short) two’s complement 32
(un)signed long bits(long) ≥ bits(int) two’s complement 32/64
(un)signed long long bits(long long) ≥ bits(long) two’s complement 64

NOTE
1: The representation and the bit-width of an integer type determines its numerical range and
its overflow behavior.

2: The ISOC++ and ISOC++11 standards set minimum requirements for the bit widths of
integer types, but leave bit widths and the representation implementation-dependent.

3: ISOC++ 3.9.1 specifies unsigned integers shall obey the laws of arithmetic module 2n,
where n is the number of bits. Signed integers are of a pure binary numeration system and the
representations allowed are two’s complement, one’s complement, and sign magnitude.

4: Table 1 provides an overview of the ISOC++ 3.9.1 requirements and bits sizes for integer
types used on most compilers for popular computer platforms. It constrains the relative sizes
of the different integer types, and also requires the signed and unsigned (and plain in the case
of characters) versions of integer types to have the same storage. The last column in the table
shows the bit widths for current platforms. As the table indicates, there is only a difference for
the (un)signed long types in current platforms.

5: ISOC++11 provides typedefs for "exact-width" integer types. These are intN_t and uintN_t,
where N can be 8, 16, 32, or 64. The typedefs are defined in the std namespace in the
include <cstdint> header. For example, int64_t is defined as long on platforms where long
is 64-bits wide and as long long on platforms where long is 32-bits wide.

6.1.2 Type Conversions
Type conversions are Supported as specified in the sections below.

- 19 -

NOTE
ISOC++ defines two kinds of conversions between integer types that are applied in the
evaluation of expressions: integer promotions and usual arithmetic conversions.

An example of an integer promotion is when a short is promoted to an int in the unary minus
expression “-a” (variable “a” is of type short).

The usual arithmetic conversions are defined by the C++ language to yield a common type for
many binary operators that expect operands of arithmetic or enumeration type.

An example of a usual arithmetic conversion is when an operand of type short is converted to
long long in the expression “a+b” where “a” is of type short and “b” is of type long long. In
that case, “a” is first promoted to type int (integer promotion that is performed as part of the
usual arithmetic conversion) and then converted to long long.

6.1.2.1 Integer Promotions
Integer (Integral) Promotions (as defined in ISOC++ 4.5) are Supported.

6.1.2.2 Usual Arithmetic Conversions
Usual Arithmetic Conversions (as defined in ISOC++ Section 5 and ISOC++11 4.5
corresponding to the addition of the long long types) are Supported.

6.1.3 Operators
The following operators are Supported for the integer types:

1. Unary operators (+, -, ~, and!).
2. Arithmetic binary operators (+, - , *, /, and %) and the corresponding assign

operators (+=, -=, *=, /=, and %=). The result of division is truncated towards zero
(0) as specified in ISOC++11 5.6.

3. Relational and Equality operators (>, >=, <, <=, ==, and!=).
4. Bitwise binary operators (&, |, and ^) and the corresponding assign operators (&=, |=,

and ^=).
5. The Conditional Operator (?:).

NOTE
The ~ operator on a bool argument x first promotes it to an int and then computes the one’s
complement (value is -x-1) of the promoted value (ISOC++ 5.3.1).

bool x = true;
int y = ~x; // y is -2
bool z = ~x; // z is true

If the intended behavior is to get the logical complement, the logical negation operator !
(ISOC++ 5.3.1) should be used.

The following operators have Restricted Support.

- 20 -

1. Shift and shift assign operators (<<, >>, <<=, and >>=). Considering E1 and E2 as
the two operands (as in “E1 shift_op E2”), the support is as follows.

a. ISOC++ 5.8 specifies that valid ranges for E2 is 0 to
length(promoted_type(E1))-1 and that otherwise the behavior is undefined
(Section 1.5.2). Shifts are Supported for valid ranges and Not Supported
otherwise.

b. For right shifts, if E1 has a signed type, the sign bit shall be shifted in. This is
a synthesis refinement on ISOC++ and ISOC++11, since these standards leave
the behavior implementation-defined when E1 is negative.

c. For left shifts, the behavior specified in ISOC++ with the natural implications
due to the addition of the long long types are presumed in this standard.

2. The prefix and postfix increment and decrement operators (++x, --x, x++, and x--)
have Restricted Support. The restriction is that the prefix and postfix increment
operators on a bool operand are Not Supported as they are deprecated by ISOC++.

6.1.4 Floating Point Types
Floating literals (as specified in ISOC++ 2.13.3) are Supported for initializing synthesizable
datatypes. If the floating literal is used to initialize an integer type (a floating-integral
conversion is involved as specified in ISOC++ 4.9) and the truncated value is not
representable in the integer type, then the behavior is undefined (see Section 1.5.2).

Otherwise, floating-point types (specified in ISOC++ 3.9.1 as float, double, and long double)
are Not Supported.

NOTE
One of the challenges for providing general synthesis support for floating-point datatypes is
the fact that the bit accurate behavior of floating point arithmetic is dependent on
implementations and compiler options used [4].

6.1.5 The void type
The void type (ISOC++ 3.9.1) is Supported.

6.2 Compound Types
Compound types in C++, as described in ISOC++ 3.9.2, have Restricted Support determined
by the support restrictions of the constituent types.

6.3 SystemC Datatypes
SystemC provides a number of datatypes that are useful for hardware design. These datatypes
are implemented as C++ classes.

The following SystemC types have Restricted Supported as described in the sections below:

• Limited Precision Integer Types: sc_int and sc_uint (Section 6.3.1)
• Finite Precision Integer Types: sc_bigint and sc_biguint (Section 6.3.2)
• Finite Precision Fixed-point Types: sc_fixed and sc_ufixed (Section 6.3.3)
• Finite Word-Length Bit Vector Type: sc_bv (Section 6.3.4.1)
• Finite Word-Length Logic Vector Types (4-valued): sc_lv (Section 6.3.4.2)
• Single Bit Logic (4-valued): sc_logic (Section 6.3.4.2)

- 21 -

The explicit use of SystemC datatypes that are not in the list above is Not Supported. The
implicit use of other related types that arise as return types from operators on the types listed
above has Restricted Support. The restriction is that the bitwidth of a return type needs to be
statically determinable.

NOTE
1: All datatypes supported for synthesis have vector length/precision that is specified by
template parameters. Thus, their vector length/precision is statically determinable during
compilation.

2: Underlying classes, such as sc_signed and sc_unsigned, can appear as the result of
expression on supported types, but are not directly synthesizable. Their length/precision is
dynamic. Some base and helper classes are specifically denoted in SystemC LRM 3.2.4 as
classes that should not be used explicitly. The SystemC LRM annotates those classes with a
superscript dagger (†).

6.3.1 Limited Precision Integer Types
SystemC LRM 7.5.2 and 7.5.3 state that the finite precision sc_int/sc_uint shall be held in an
implementation-dependent native C++ integer which shall have a minimum representation
size of 64 bits. For synthesis, representation sizes greater than 64-bits are Not Supported.

In summary, the following types have Restricted Supported.

• sc_int<W>: limited precision signed integer (W ≤ 64).
• sc_uint<W>: limited precision unsigned integer (W ≤ 64).

Support restrictions on operators and functions are covered in Section 6.3.5. Many operators
are available through implicit conversions to int_type and uint_type and their support is
determined by the support of those native C++ types.

6.3.2 Finite Precision Integer Types
The following Finite Precision Integer types have Restricted Support.

• sc_bigint<W>: finite precision signed integer.
• sc_biguint<W>: finite precision unsigned integer.

The support restrictions of common operators and functions are covered in Section 6.3.5.

6.3.3 Finite Precision Fixed-point Types
The fixed-point types sc_fixed and sc_ufixed have Restricted Support as listed below.

1. Overflow modes have Restricted Support as specified in Table 2 below as a function
of the two template parameters that determine the overflow mode: o_mode and n_bits.

2. All Quantization modes are Supported as specified in Table 3 below as a function of
the template parameter that determines the quantization mode: q_mode.

3. Common operators/functions: see Section 6.3.5.
4. Specific member functions:

a. Query of parameters: wl, iwl, q_mode, o_mode, and n_bits are Supported.
b. Query of value: is_neg, is_zero, and value are Not Supported.

- 22 -

c. Other member functions such as overflow_flag, quantization_flag, type_params,
and cast_switch are Not Supported.

5. Simulation specific functionality such as sc_fxtype_param, sc_fxcast_switch, and
SC_OFF are Not Supported.

Table 2: Overflow Modes

Overflow Mode Parameters Support
o_mode n_bits

Wrap-around Basic (default) SC_WRAP 0 Supported
Saturation SC_SAT - Supported
Symmetrical Saturation SC_SAT_SYM - Supported
Saturation to Zero SC_SAT_ZERO - Supported
Wrap-around Advanced SC_WRAP > 0 Not Supported
Sign Magnitude Wrap-Around SC_WRAP_SM ≥ 0 Not Supported

Table 3: Quantization Modes

Quantization Mode Parameter (q_mode) Support
Truncation (default) SC_TRN Supported
Rounding to plus Infinity SC_RND Supported
Truncation to zero SC_TRN_ZERO Supported
Rounding to zero SC_RND_ZERO Supported
Rounding to minus infinity SC_RND_MIN_INF Supported
Rounding to infinity SC_RND_INF Supported
Convergent rounding SC_RND_CONV Supported

6.3.4 Logic and Vector Types

6.3.4.1 Finite Word-Length Bit Vectors (sc_bv)
The finite word-length bit vector sc_bv has Restricted Support. The restrictions on common
operators/functions are outlined in Section 6.3.5.

6.3.4.2 Single-Bit Logic (sc_logic) and Finite Word-Length Logic Vectors (sc_lv)
The single-bit logic sc_logic and the finite world-length logic vector sc_lv have Restricted
Support. The restriction on common operators/functions are outlined in Section 6.3.5.
In addition, the following restrictions apply.

• The unknown logic constant (sc_logic ("X"), SC_LOGIC_X) is Not Supported.
• The high-impedance logic constant (sc_logic ("Z"), SC_LOGIC_Z) is Not Supported.

6.3.5 Common Operators and Functions

6.3.5.1 Bit Select Operator
The bit select operators as specified by SystemC LRM 7.2.5 have Restricted Support. The
restriction is that the index is within the bounds of the object being accessed.

NOTE
An out-of-bound access will be treated as an error by synthesis as defined in Section 1.6.3.

- 23 -

The bit select operator[i] allows the selection of a bit of a variable either as an rvalue or an
lvalue.

As defined by SystemC LRM 7.5.4.6, sc_int/sc_uint temporary values cannot have bit-select
applied.

As defined by SystemC LRM 7.7 and 7.5.7, the bit select on concatenations or subreferences
also cannot be performed.

Example:

sc_int< 8 > x ;
sc_bigint< 8 > y ;
x[3] = y[2] // Legal
(x+x)[3] = 0 ; // Illegal, as x+x is promoted to a native C++ type
(y+y)[3] = 0 ; // Legal as y+y is still a sc_bigint
(y,y)[3] = 0 ; // Illegal as concatenation doesn’t support bitref

6.3.5.2 Part Select Operator
The part select operators (operator(l,r) and range(l,r)), as specified by SystemC LRM 7.2.6,
have Restricted Support. The first restriction is both the left and the right index positions lie
within the bounds of the object. The second restriction is the range of the part select has a
statically determinable length. The third restriction is the left hand index is greater or equal to
the right hand index.

Out-of-bound access shall be treated as an error (Section 1.6.3), as specified in the SystemC
LRM.

NOTE
The third restriction implies bit-reversal using part selects is not supported. Given the second
restriction, the third restriction becomes trivial to check.

The bit-reversal behavior is specified for fixed-point types, as specified in SystemC LRM
7.10.5. It is also implied for vector types in the specification of reversed in SystemC LRM
7.9.8.7. Part select is not allowed to reverse bit-order for limited-precision integers, as stated
in NOTE1 in SystemC LRM 7.2.6. The SystemC LRM does not explicitly mention whether
part selects are allowed to reverse bit-order for finite-precision integers.

Example of statically determinable range length:

x(i+5,i+3) = y(k+4,k+2); // range length = 3

NOTE
As defined by SystemC LRM 7.5.4.6, sc_int/sc_uint temporary values cannot have part-select
applied.

Part select is not available for concatenations and subrefs of integer types. Part select is
available for concatenations and subrefs of vector types (sc_bv and sc_lv).

Example:

sc_int< 8 > x ;
sc_bigint< 8 > y ;

- 24 -

x(5,3) = y(4,2); // Legal
(x+x)(5,3) = 0 ; // Illegal: x+x is promoted to native C++ type
(y+y)(5,3) = 0 ; // Legal as y+y is still a sc_bigint
(y,y)(5,3) = 0 ; // Illegal: concatenation of bitref not allowed

The result of a part select cannot be directly assigned to a fixed point variable, but it can be
assigned to a range.

6.3.5.3 Function concat(C1,C2) and operator,(C1,C2)
The concatenation function and operator are Supported.

NOTE
The SystemC datatype package defines concatenation functionality via a template specialized
function concat(C1,C2) and operator,(C1,C2).

The concatenation operation (op1,op2) may be used as an rvalue or an lvalue.

Example:

 (x, y) = (z, w);

Because of the difference in return types for operators for sc_bigint/sc_biguint and
sc_int/sc_uint, using expressions (unless they are cast) may give different results for arbitrary
precision integers than for finite precision integers. Using uncast expressions other than
concatenation, bit select, and part select as arguments of the concatenate operation is not
recommended. For example, using the Accellera Open Source simulator:

sc_int<4> t = 1; sc_bigint<4> tb = 1;
sc_int<4> x = 2; sc_bigint<4> xb = 2;

cout << (t, t*x) << endl; // result = 3
cout << (t, tb*xb) << endl; // result = 258

cout << (t, x >> 1) << endl; // result = 3
cout << (t, xb >> 1) << endl; // result = 17

6.3.5.4 Reduction Operators
The reduction operators specified in SystemC LRM 7.2.8 are Supported.

NOTE
The reduce operators are: and_reduce, or_reduce, xor_reduce, nand_reduce, nor_reduce,
and xnor_reduce.

The reduction operators are not available for the fixed-point datatypes.

6.3.5.5 Arithmetic Operators
The arithmetic operators for limited and finite precision integers, as defined in the SystemC
LRM, are Supported.

- 25 -

The arithmetic operators for the finite precision fixed-point types, as defined in the SystemC
LRM, have Restricted Support. The implementation-dependent behavior described in
SystemC LRM 7.10.6 (variable-precision fixed-point value limits) is Not Supported. A
consequence is that the division operator is Not Supported.

NOTE
Examples of implementation-dependent behavior described the SystemC LRM 7.10.6 can be
found in the Accellera open source simulator in the form of the following compiler flags:

• SC_FIXDIV_WL: bounds the number of bits that are computed for division. Division
can require an infinite number of bits to represent.

• SC_FXMAX_WL: is the maximum width of a fixed-point type. It is presumed
precision is set high enough so it does not change the behavior of the design.
Synthesis presumes these limits are not present.

The behavior of operators ++ and – for fixed-point datatypes, while using the standard
increment/decrement by 1, is in effect a NOP whenever iwl > wl and in some cases of iwl < 1.

The arithmetic operators are defined for the numeric types (integer and fixed-point types).
The arithmetic operators include:

• Unary operators + and –
• Binary operators +, -, *, /, and %; assign operators +=, -=, *=, /=, and %=. The

operators % and %= are not available for fixed-point types.
• Prefix and Postfix increment and decrement operators ++ and --.

6.3.5.6 Bitwise Complement Operator
The unary bitwise complement operator ~ specified in the SystemC LRM is Supported.

NOTE
The unary ~ operator complements its argument bitwise. For vector types, the width of the
return type is identical to the width of the operand. This is consistent with the vector types not
having an arithmetic view (no signed/unsigned treatment). The integer and fixed-point types
(these are referred to in SystemC LRM 8.1 as numeric types) are intended to have an
arithmetic treatment. In an arithmetic context, ~x is equal to (-x-1). However, the unary
operators ~ for the SystemC integer and fixed-point types are not consistent with an
arithmetic treatment and are in fact inconsistent amongst themselves:

cout << ~((sc_uint<8>) 128) << endl;
 // 18446744073709551487
cout << ~((sc_biguint<8>) 128) << endl; // 383
cout << ~((sc_ufixed<8,8>) 128) << endl; // 127
cout << ~((unsigned char) 128) << endl;
 // -129, correct ~x = (-x-1)

6.3.5.7 Bitwise Logical Operators
The binary bitwise logical operators (&, |, and ^) and bitwise assignment operators (&=, |=,
and ^=) specified in the SystemC LRM are Supported.

- 26 -

NOTE
The binary operations &, |, ^ compute the bitwise and, or and xor operation respectively.

The mixing of signed an unsigned operands is not allowed for fixed-point types (a difference
compared to SystemC integer types).

6.3.5.8 Logical Negation
The logical negation operator ! specified in the SystemC LRM is Supported.

NOTE
The operator ! is available for sc_int_bitref, sc_uint_bitref, sc_signed_bitref_r, and
sc_unsigned_bitref_r. Using the operator ! on fixed-point types leads to implicit conversions,
so there may be unexpected truncation involved. The operator ! is available on limited
precision types through implicit conversions to int_type (C++ native type).

6.3.5.9 Relational Operators
Relational Operators, as defined in the SystemC LRM, are Supported.

NOTE
The relational operators compare the two operands as in C++ and return a value of type bool.
The comparison is done arithmetically for integer and fixed-point types. The relational
operators == and != operators are available for vector types.

Mixing signed and unsigned limited precision integers can lead to unexpected results. For
example:

(sc_uint<8>) 1 > (sc_int<8>) -1 // incorrectly returns false

6.3.5.10 Shift Operators

6.3.5.10.1 Limited Precision Integers
The shift operators (<< and >>) and shift assign operators (<<= and >>=) have Restricted
Support. The restriction is the second operand needs to be in the range 0 to 63.

NOTE
The restriction is inherited from the implicit conversion to the native C++ 64-bit integers in its
implementation (see Section 6.1.3 and SystemC LRM 7.5.4.6). This restriction is also tied to
the restriction in Section 6.3.2 on the maximum bitwidth for limited precision integers.

Outside the range 0 – 63, the behavior is undefined (see Section 1.5.2).

6.3.5.10.2 Finite Precision Integers
The shift operators (<< and >>) and shift assign operators (<<= and >>=) have Restricted
Support. The first restriction is the second operand has to have a non-negative value. The
support for the left shift operator (<<) is also restricted to have a statically determinable return
bit-width, which implies the value of second operand is statically determinable.

The restrictions above also apply to the said operators applied on the base types
(sc_value_base, sc_signed, and sc_unsigned), and the types resulting from part selects

- 27 -

(sc_signed_subref_r, sc_signed_subref, sc_unsigned_subref_r, and sc_unsigned_subref) and
concatenations (sc_concatref).

NOTE
SystemC LRM 7.6.3.7 specifies the behavior is undefined (see Section 1.6.2) if the second
operand is negative.

6.3.5.10.3 Finite Precision Fixed-Point Types
The shift operators (<<= and >>=) have Restricted Support. The restriction is the length and
integer length of the return type have to be statically determinable, which implies the value of
the second operand is statically determinable.

The shift assign operators (<<= and >>=) have Restricted Support. The restriction is the
value of the second operand is statically determinable for all cases other than when the first
operand has qmode=SC_TRN, omode=SC_WRAP, and n_bits=0. This restriction guarantees
no hardware is required for handling rounding and/or saturation.

The restrictions above also apply to the said operators applied on the base types (sc_fxval,
sc_fixnum, sc_fix, and sc_ufix) and types resulting from part selects (sc_fxnum_subref).

NOTE
Fixed-point shifts are bidirectional (though this is not explicitly stated in the SystemC LRM)
as the second argument is a C++ int. The hardware cost can be minimized if the range of the
second argument can be reduced. For example, if the range analysis of the synthesis tool can
determine that the second argument is non-negative, then a unidirectional shift suffices.

6.3.5.10.4 Finite Word-Length Vector Types
The shift operators (<< and >>) and shift assign operators (<<= and >>=) have Restricted
Support. The first restriction is the second operand has to have a non-negative value. The
support for the left shift operator (<<) is also restricted to have a statically determinable return
bit-width, which implies the value of second operand is statically determinable.

The restrictions above also apply to the said operators applied on the base types (sc_lv_base
and sc_bv_base), and the types resulting from part selects (sc_subref_r and sc_subref) and
concatenations (sc_concref_r and sc_concref).

NOTE
SystemC LRM 7.9.3.7, 7.9.4.7, and 7.9.8.6 specify it is an error (Section 1.6.3) if the second
operand is negative. The SystemC LRM is silent on what happens when the second operand is
negative for the classes resulting from concatenation (sc_concref_r and sc_concref).

6.3.5.11 Rotate Operators
The rotate operators lrotate and rrotate have Restricted Support. The first restriction is the
argument (amount what which to rotate) is not negative. The second restriction is the value of
the argument is statically determinable.

NOTE
The rotate operators are available for the vector types (sc_lv and sc_bv), their base classes
(sc_lv_base and sc_bv_base), and the types resulting from part select (sc_subref) and

- 28 -

concatenations (sc_concref) of vector classes.

The SystemC LRM does not explicitly define the behavior for negative values.

6.3.5.12 Explicit Conversions
Explicit conversions have Restricted Support as outlined below.

• Conversions to_int, to_uint, to_long, to_ulong, to_int64, and to_uint64 are Supported.
• The following conversions are Not Supported:

o to_float and to_double;
o to_char (conversion to character for sc_logic and bit select for vector types);
o to_string (and its shortcut variants to_dec, to_hex, to_oct, and to_bin).

• Conversion to_bool are

o Not Supported for types sc_logic and vector types;
o Supported for bit-select for the limited and finite precision integers.

• Member function is_01 (the SystemC LRM labels this as a explicit conversion
function) is Not Supported.

• Member function value (for sc_logic and vector types) is Not Supported.

6.3.5.13 Conversion Operators
The conversion operators have Restricted Support. The restriction is the implicit conversion
operator is to a supported type.

NOTE
The following conversion operators are defined in the SystemC LRM, along with the classes
that define them.

• operator int_type(): limited precision integers.
• operator uint_type(): limited precision integers.
• operator uint64(): sc_int_bitref_r, sc_uint_bitref_r, sc_signed_bitref_r,

sc_unsigned_bitref_r, and sc_concatref.
• operator sc_unsigned(): sc_signed_subref_r, sc_unsigned_subref_r, and sc_concatref.
• operator sc_logic(): sc_bitref_r.
• operator double(): sc_fxnum and sc_fxval.
• operator bool(): sc_fxnum_bitref.
• operator sc_bv_base(): sc_fxnum_subref.

6.3.5.14 Assignment Operators and Constructors
Assignment operators and constructors have Restricted Supported as described below.

Initialization through String Literals, as specified in SystemC LRM 7.3, has Restricted
Support. Initialization of numeric or vector type object with a string literal as a parameter of
the copy constructor is Supported, but an initialization through a variable of char or
std::string type is Not Supported. The sc_numrep of SC_NOBASE (implementation-defined
prefix or missing prefix) is Not Supported.

The SystemC LRM introduces the concept of case insensitivity to the prefix and magnitude
representations. These are Supported.

- 29 -

NOTE
In accordance with the SystemC definition of string literals, SystemC LRM 7.3, a literal
representation may be used as the value of a SystemC numeric or vector type object. It
consists of a standard prefix, followed by a magnitude expressed as one or more digits.

sc_numrep Prefix
(case insensitive)

Magnitude format

SC_NOBASE Implementation-
defined

Implementation-defined

SC_DEC 0d Decimal Number, digits 0-9
SC_BIN 0b Binary Number, digits 0-1
SC_BIN_US 0bus Binary Unsigned
SC_BIN_SM 0bsm Binary Sign & Magnitude
SC_OCT 0o Octal Number, digits 0-7
SC_OCT_US 0ous Octal Unsigned
SC_OCT_SM 0osm Octal Signed & Magnitude
SC_HEX 0x Hexadecimal Number, digits 0-9, a-f, A-F
SC_HEX_US 0xus Hexadecimal Unsigned
SC_HEX_SM 0xsm Hexadecimal Sign & Magnitude
SC_CSD 0csd Canonical Signed Digit

6.3.5.15 String input and output
• Not Supported for dump(), print(), and scan(). See SystemC LRM 7.2.10 and 7.2.11.
• Not Supported for to_string(). See SystemC LRM 7.3.
• Not Supported for String Shortcut Methods (to_dec(), to_bin(), and so on). See

SystemC LRM 7.10.8.1.

6.3.5.16 Length
The member function length is Supported.

6.3.5.17 Reversed
The member function reversed is Not Supported.

NOTE
This is consistent with the restriction on bit-reversal in Section 6.3.5.2.

- 30 -

7 Declarations
Declarations, as defined for ISOC++ Section 7, have Restricted Support and those specific
restrictions and coding guidelines are listed in the subsequent sections and chapters.

7.1 Specifiers
 Specifiers (ISOC++ 7.1) have Restricted Support.

7.1.1 Storage class specifiers
Storage class specifiers (ISOC++ 7.1.1) have Restricted Support.

1. The auto and register specifiers are hints to a C++ compiler and are Ignored.
2. The mutable specifier is Supported.
3. The extern specifier has Restricted Support, as specified in Section 2.1.
4. The static specifier has Restricted Support.

a. Static class definitions are Supported.
b. Static variables have Restricted Support. Only const static variables are supported.
c. Static functions and static member functions are Supported.
d. Static data members of class have Restricted Support. Only const static data

members of class are Supported.

Examples:

static class my_class c ; // Static class definition,
supported
static void my_func(void) { } // Static function definition,
supported
static int var; // Non-const, not supported
static const int const_var = 5; // Const, supported
struct my_struct {
 static int member; // Non-const, not supported
 static const int const_member; // Const, supported
 static void my_member_func(void) { }
 // Static member function
};

7.1.2 Function specifiers
The function specifiers, as defined in ISOC++ 7.1.2, have Restricted Support.

• The inline specifier is Supported as defined in ISOC++.
• The explicit specifier is Supported as defined in ISOC++.
• The virtual specifier is Supported. Virtual functions are supported with the limitations

described in Section 12.10.3.

7.1.3 The typedef specifier
Supported as defined in ISOC++ 7.1.3.

7.1.4 The friend specifier
Supported as defined in ISOC++ 7.1.4.

7.1.5 Type specifiers

- 31 -

Type specifiers (ISOC++ 7.1.5) have Restricted Support.

7.1.5.1 cv-qualifiers
The cv-qualifiers (ISOC++ 7.1.5.1) have Restricted Supported.

1. The cv-qualifier const is Supported
2. The cv-qualifier volatile is Not Supported.

7.1.5.2 Simple type specifiers
Simple type specifiers (ISOC++ 7.1.5.2) have Restricted Support. They are Supported for
types that are Supported as specified in Section 6.

7.1.5.3 Elaborated type specifiers
Elaborated type specifiers (ISOC++ 7.1.5.3) are Supported.

7.1.6 Enumerations
Supported as defined in ISOC++ 7.2.

7.1.7 The asm declaration
Not supported.

7.1.8 Linkage specifications
External linkage (as described in ISOC++7.5) is Not Supported. See Section 2.

- 32 -

8 Declarators
Declarators, as defined in ISOC++ Section 8, have Restricted Support.

8.1 Type names
Supported as defined in ISOC++ 8.1.

8.2 Ambiguity resolution
Supported as defined in ISOC++ 8.2.

8.3 Kinds of declarators

8.3.1 Pointers
Pointers have Restricted Support. Pointers that are statically determinable are Supported.
Otherwise, they are Not Supported. Statically determinable implies the synthesis tool is able
to determine the actual object whose address is contained by the pointer. If the pointer points
to an array, the size of the array shall also be statically determinable.

Using the value of a pointer as data is Not Supported. This includes, for instance, testing that
a pointer is zero (0) or hashing on a pointer.

8.3.2 References
Supported as defined in ISOC++ 8.3.2.

8.3.3 Pointers to Nonstatic Class Members
Pointers to members using::* and access via ->* and .* have Restricted Support. They are
Supported described in ISOC++ 8.3.3 and 5.5, subject to the restrictions described in Section
8.3.1 on pointers.

8.3.4 Arrays
The element type of an array shall be any of the types which are permitted by ISOC++ as
element types, excluding pointers, and which are Supported for synthesis; or any SystemC
data type which is Supported for synthesis and which conforms to the requirements on
element types stated in ISOC++.

Any declaration of an array shall include the specification of its bound, either explicitly, if no
initializer is specified, or as an implication from the initializer, if such is specified.

8.3.5 Function parameters
Function parameters (ISOC++ 8.3.5) have Restricted Support. The restriction is ellipsis (…)
function parameters are Not Supported.

8.3.6 Default arguments
Default arguments (ISOC++ 8.3.6) are Supported.

8.4 Function definition
Function definitions (ISOC++ 8.4) are Supported.

- 33 -

8.5 Initializers
Initializers (ISOC++ 8.5) are Supported.

8.5.1.1 Aggregates
Initialization of aggregates (ISOC++ 8.5.1) is Supported.

8.5.1.2 Character arrays
Initialization of character arrays (ISOC++ 8.5.2) is Supported. Also see Section 6.1.1.1 for
character literals that are supported.

8.5.1.3 References
Initialization of references is Supported, as defined in ISOC++ 8.5.3.

- 34 -

9 Expressions
An expression is a sequence of operators and operands that can result in a value. Expressions
can cause side effects (ISOC++ Section 5). The order of evaluation of operands and the order
in which side effects take place are unspecified by ISOC++, except when noted. For example
the statement:

 i = x[i++];

has a behavior that is not specified in ISOC++. Expressions that are legal in ISOC++, but
whose behavior is unspecified due to order of evaluation or order of side effects, are
supported for synthesis. Synthesis tools are permitted to interpret such expressions in any way
that is compliant with the ISOC++ standard.

NOTE
User code should not use such expressions to avoid differences in the results between
simulation using a particular compiler and synthesis using a particular synthesis tool.

9.1 Function call
Recursive functions (a function which includes a call to itself either directly or indirectly) are
Not Supported.

9.2 Explicit type conversion
An explicit type conversion (ISOC++ 5.4) can be expressed using a type conversion operator,
a functional notation, or cast notation. An explicit type conversion of non-pointer type is
Supported. On the other hand, an explicit type conversion of pointer is Supported with
Restrictions.

9.2.1 Type conversion operators

9.2.1.1 Dynamic cast
The type conversion operator function dynamic_cast<T>(v) (ISOC++ 5.2.7) is Not
Supported.

9.2.1.2 Static cast
The type conversion operator function static_cast<T>(v) (ISOC++ 5.2.9) is Supported within
the limitations above.

9.2.1.3 Reinterpret cast
The type conversion operator function reinterpret_cast<T>(v) (ISOC++ 5.2.10) is Not
Supported.

9.2.1.4 Const cast
The type conversion operator function const_cast<T>(v) (ISOC++ 5.2.11) is Supported
within the limitations above.

9.2.2 Functional notation

- 35 -

An explicit type conversion of pointer type using functional notation is Supported with
Restrictions. Each type conversion of pointer type using functional notation can be mapped to
any of type conversion operators described in Section 9.2.1. The restriction is the same as
those of the type conversion operators.

9.2.3 Cast notation
An explicit type conversion using cast notation is Supported with Restrictions. Each type
conversion of pointer type using cast notation can be mapped to any of type conversion
operators described in Section 9.2.1. The restriction is the same as those of the type
conversion operators, which are equivalent to the given explicit type conversion using cast
notation.

9.3 typeid
The type identification function typeid (ISOC++ 5.2.8) is Not Supported.

9.4 Unary Expressions and Operators

9.4.1 Unary Operators
The unary operators (ISOC++ 5.3.1) of the form * & + - ! and ~ are Supported.

9.4.2 Increment and decrement
Supported (ISOC++ 5.3.2).

9.4.3 sizeof
The sizeof operator (ISOC++ 5.3.3) is Not Supported.

9.4.4 New and delete
The new operator (ISOC++ 5.3.4) has Restricted Support. It is Supported for the instantiation
of variable arrays and SC_MODULE. It is Not Supported for the instantiation of types
derived from the sc_object type, other than SC_MODULE. The new operator may appear in
the constructor or constructor initializer list within SC_MODULE only and that use of new is
Not Supported anywhere within the behavioral description, such as inside SC_METHOD,
SC_THREAD, or SC_CTHREAD. When allocating an array of objects using new, the number
of elements shall be statically determinable.

The delete operator (ISOC++ 5.3.5) is Not Supported.

The use of set_new_handler() shall be Ignored.

Overloading the new or delete operators are Not Supported. The placement new construct is
Not Supported.

Example:

 SC_MODULE(MyModule) {

sc_in_clk CLK;
sc_in<bool> RST;
sc_in<int> a;
sc_in<int> b;
sc_out<int> c;

- 36 -

sc_out<bool> RDY;
sc_signal<int> tmp;

Adder add;
GCD *gcd;
unsigned int *mem ;

SC_CTOR(MyModule): add("add"), mem(new unsigned[128]) {

add(a,b,tmp);
gcd = new GCD("GCD");
gcd->CLK(CLK);
gcd->RST(RST);
gcd->x(tmp);
gcd->y(b);
gcd->z(c)
gcd->RDY(RDY);

}
 };

9.5 Pointer-to-member operators
The pointer-to-member operators ->* and .* have Restricted Support (ISOC++ 5.5).
The restrictions are based on the Restricted Support of pointers as defined in Section 8.3.1.

9.6 Multiplicative, Additive, Shift, Relational, Equality, and Assignment
operators

Supported (ISOC++ 5.6, 5.7, 5.8, 5.9, 5.10, and 5.17).

9.7 Bitwise and Logical AND/OR/XOR operators
Supported (ISOC++ 5.11 thru 5.15).

9.8 Conditional Operator
Supported (ISOC++ 5.16).

9.9 Comma operator
Supported (ISOC++ 5.18).

- 37 -

10 Statements
Statements (as defined in ISOC++ Section 6) have Restricted Support.

10.1 Labeled statement
Labels are Supported as defined in ISOC++ 6.1.

10.2 Compound statement
The compound statement (also, and equivalently, called block) is supported, as defined in
ISOC++ 6.3, to group sets of statements together.

10.3 Selection statements
Selection statements include if, if-else, and switch statements.
Selection statements are Supported as defined in ISOC++ 6.4.

10.3.1 The if statement
Supported as defined in ISOC++ 6.4.1.

10.3.2 The switch statement
Supported as defined in ISOC++ 6.4.2;

10.4 Iteration statements
The iteration statements while, do, and for are Supported as defined in ISOC++ 6.5.

10.5 Jump statements
Jump Statements (ISOC++ 6.6) have Restricted Support as described below.

10.5.1 The break statement
The break statement (as defined in ISOC++ 6.6.1) has Restricted Support.
The restriction is specified in Section 4: a break that exits the infinite loop of an
SC_CTHREAD or SC_THREAD process is Not Supported.

10.5.2 The continue statement
The continue statement (as defined in ISOC++ 6.6.2) is Supported.

10.5.3 The return statement
The return statement (as defined in ISOC++ 6.6.3) has Restricted Support.
The restriction is specified in Section 4: a return statement that occurs within the function
defining an SC_CTHREAD or SC_THREAD process is Not Supported.

10.5.4 The goto statement
The goto statement (as defined in ISOC++ 6.6.4) is Not Supported.

10.6 Declaration statement
Declaration statements are Supported as defined in ISOC++ Section 7.

- 38 -

10.7 Exception handling statements
The exception handling mechanisms (as defined in ISOC++ Section 15) are Not Supported.
These include the try, catch(), and throw statements, and the special functions terminate(),
unexpected(), and uncaught_exception().

- 39 -

11 Namespaces
namespaces (as defined in ISOC++ 7.3) are Supported. Non-const global variables are Not
Supported for synthesis. Within a function body, only those names of variables shall be used,
which are declared previously in the function body or passed as parameters. Global constants
are Supported for synthesis.

Examples:

 // Example Namespace

namespace NSP {
 int var;
 const int CNST = 42;
}

void foo(const int val) {
 using namespace NSP;
 int dummy = CNST; // OK. Note that the occurrence of name CNST
 // may be replaced by the value ‘42’ by a synthesis

// tool.
dummy = var; // error. The name of a variable being declared in

// another namespace must not be used within a
// function body.

var = val; // error. The name of a variable being declared in
// another namespace must not be used within a
// function body.

11.1 Namespace definition
Supported as defined in ISOC++ 7.3.1.

11.1.1 Unnamed namespaces
Supported as defined in ISOC++ 7.3.1.1.

11.1.2 Namespace member definitions
Supported as defined in ISOC++ 7.3.1.2.

11.2 Namespace alias
Supported as defined in ISOC++ 7.3.2.

11.3 The using declaration
Supported as defined in ISOC++ 7.3.3.

11.4 Using directive
Supported as defined in ISOC++ 7.3.4.

- 40 -

12 Classes
Restrictions pertaining to classes defined in the SystemC LRM are specified in the respective
Section in this standard.
This Section describes the support for user-defined classes.

Restricted Support as described below (ISOC++ Section 9).

12.1 Class names
Supported as defined in ISOC++ 9.1.

12.2 Class members
Supported as defined in ISOC++ 9.2.

12.3 Member functions
Supported as defined in ISOC++ 9.3.

12.3.1 Nonstatic member functions
Supported as defined in ISOC++ 9.3.1.

12.3.2 The this pointer
Supported as defined in ISOC++ 9.3.2.

12.4 Static members
Restricted Support.

12.4.1 Static member functions
Supported (ISOC++ 9.4.1) as specified in Section 7.1.1.

12.4.2 Static data members
Static data members (ISOC++ 9.4.2) have Restricted Support as specified in Section 7.1.1.

12.5 Unions
Not supported (ISOC++ 9.5).

12.6 Bit-fields
Bit-fields, as defined in ISOC++ 9.6, are Not Supported.

12.7 Nested class declarations
Supported as defined in ISOC++ 9.7.

12.8 Local class declarations
Supported as defined in ISOC++ 9.8.

12.9 Nested type names
Supported as defined in ISOC++ 9.9.

- 41 -

12.10 Derived classes
Supported as defined in ISOC++ Section 10.

12.10.1 Multiple base classes
Supported as defined in ISOC++ 10.1.

12.10.2 Member name lookup
Supported as defined in ISOC++ 10.2.

12.10.3 Virtual functions
Virtual functions, as defined in ISOC++ 10.3, have Restricted Support provided that when
such functions are called, the type of the "this" object can be statically determined.

12.10.4 Abstract classes
Supported as defined in ISOC++ 10.4.

12.11 Member access control
Supported as defined in ISOC++ Section 11.

12.11.1 Access specifiers
Supported as defined in ISOC++ 11.1.

12.11.2 Accessibility of base classes and base class members
Supported as defined in ISOC++ 11.2.

12.11.3 Access declarations
Supported as defined in ISOC++ 11.3.

12.11.4 Friends
Supported as defined in ISOC++ 11.4.

12.11.5 Protected member access
Supported as defined in ISOC++ 11.5.

12.11.6 Access to virtual functions
Supported as defined in ISOC++ 11.6.

12.11.7 Multiple access
Supported as defined in ISOC++ 11.7.

12.11.8 Nested classes
Supported as defined in ISOC++ 11.8.

12.12 Special member functions
Restricted Support as described below (ISOC++ Section 12).

12.12.1 Constructors

- 42 -

Constructors of user defined classes (as defined in ISOC++ 12.1) are Supported.

12.12.2 Temporary objects
Supported as defined in ISOC++ 12.2.

12.12.3 Conversions
Supported as defined in ISOC++ 12.3.

12.12.3.1 Conversion by constructor
Supported as defined in ISOC++ 12.3.1.

12.12.3.2 Conversion functions
Supported as defined in ISOC++ 12.3.2.

12.12.4 Destructors
Supported as defined in ISOC++ 12.4.

12.12.5 Free store
Not supported (ISOC++ 12.5).

12.12.6 Initialization
Supported (ISOC++ 12.6).

12.12.6.1 Explicit initialization
Explicit initialization (as defined in ISOC++ 12.6.1) is Supported.

12.12.6.2 Initializing bases and members
Supported as defined in ISOC++ 12.6.2.

12.12.7 Copying class objects
Supported as defined in ISOC++ 12.8.

- 43 -

13 Overloading
Restricted Support as described below (ISOC++ Section 13).

13.1 Overloadable declarations
Supported as defined in ISOC++ 13.1.

13.2 Declaration matching
Supported as defined in ISOC++ 13.2.

13.3 Overload resolution
Supported as defined in ISOC++ 13.3.

13.3.1 Candidate functions and argument lists
Supported as defined in ISOC++ 13.3.1.

13.3.1.1 Function call syntax
Supported as defined in ISOC++ 13.3.1.1.

13.3.1.1.1 Call to named function
Supported as defined in ISOC++ 13.3.1.1.1.

13.3.1.1.2 Call to object of class type
Supported as defined in ISOC++ 13.3.1.1.2.

13.3.1.2 Operators in expressions
Supported as defined in ISOC++ 13.3.1.2.

13.3.1.3 Initialization by constructor
Supported as defined in ISOC++ 13.3.1.3.

13.3.1.4 Copy-initialization of class by user-defined conversion
Supported as defined in ISOC++ 13.3.1.4.

13.3.1.5 Initialization by conversion function
Supported as defined in ISOC++ 13.3.1.5.

13.3.1.6 Initialization by conversion function for direct reference binding
Supported as defined in ISOC++ 13.3.1.6.

13.3.2 Viable functions
Supported as defined in ISOC++ 13.3.2.

13.3.3 Best Viable Function
Supported as defined in ISOC++ 13.3.3.

13.3.3.1 Implicit conversion sequences
Supported as defined in ISOC++ 13.3.3.1.

- 44 -

13.3.3.1.1 Standard conversion sequences
Supported as defined in ISOC++ 13.3.3.1.1.

13.3.3.1.2 User-defined conversion sequences
Supported as defined in ISOC++ 13.3.3.1.2.

13.3.3.1.3 Ellipsis conversion sequences
Not Supported (ISOC++ 13.3.3.1.3).

13.3.3.1.4 Reference Binding
Supported as defined in ISOC++ 13.3.3.1.4.

13.3.3.2 Ranking implicit conversion sequences
Supported as defined in ISOC++ 13.3.3.2.

13.4 Address of overloaded function
Address operations are Not Supported (ISOC++ 13.4).

13.5 Overloaded operators
Supported as defined in ISOC++ 13.5.

13.5.1 Unary operators
Supported as defined in ISOC++ 13.5.1.

13.5.2 Binary operators
Supported as defined in ISOC++ 13.5.2.

13.5.3 Assignment
Supported as defined in ISOC++ 13.5.3.

13.5.4 Function call
Supported as defined in ISOC++ 13.5.4.

13.5.5 Subscripting
Supported as defined in ISOC++ 13.5.5.

13.5.6 Class member access
Supported as defined in ISOC++ 13.5.6.

13.5.7 Increment and decrement
Supported as defined in ISOC++ 13.5.7.

13.6 Built-in operators
Supported as defined in ISOC++ 13.6.

- 45 -

14 Templates
Supported as described below (ISOC++ Section 14).

14.1 Template parameters
Supported (ISOC++ 14.1).

14.2 Names of template specializations
Supported as defined in ISOC++ 14.2.

14.3 Template arguments
Supported as defined in ISOC++ 14.3.

14.3.1 Template type arguments
Supported as defined in ISOC++ 14.3.1.

14.3.2 Template non-type arguments
Supported as defined in ISOC++ 14.3.2.

14.3.3 Template template arguments
Supported as defined in ISOC++ 14.3.3.

14.4 Type equivalence
Supported as defined in ISOC++ 14.4.

14.5 Template declarations
Supported as defined in ISOC++ 14.5.

14.5.1 Class Templates
Supported as defined in ISOC++ 14.5.1.

14.5.1.1 Member functions of class templates
Supported as defined in ISOC++ 14.5.1.1.

14.5.1.2 Member classes of class templates
Supported as defined in ISOC++ 14.5.1.2.

14.5.1.3 Static data members of class templates
Restricted Support (ISOC++ 14.5.1.3). See Section 12.4.2 for static data members of classes
and Section 7.1.1 for the static storage class specifier.

14.5.2 Member templates
Supported as defined in ISOC++ 14.5.2.

14.5.3 Friends
Supported as defined in ISOC++ 14.5.3.

- 46 -

14.5.4 Class template partial specializations
Supported as defined in ISOC++ 14.5.4.

14.5.4.1 Matching of class template partial specializations
Supported as defined in ISOC++ 14.5.4.1.

14.5.4.2 Partial ordering of class template specializations
Supported as defined in ISOC++ 14.5.4.2.

14.5.4.3 Members of class template specializations
Supported as defined in ISOC++ 14.5.4.3.

14.5.5 Function templates
Supported as defined in ISOC++ 14.5.5.

14.5.5.1 Function template overloading
Supported as defined in ISOC++ 14.5.5.1.

14.5.5.2 Partial ordering of function templates
Supported as defined in ISOC++ 14.5.5.2.

14.6 Name resolution
Supported as defined in ISOC++ 14.6.

14.6.1 Locally declared names
Supported as defined in ISOC++ 14.6.1.

14.6.2 Dependent names
Supported as defined in ISOC++ 14.6.2.

14.6.2.1 Dependent types
Supported as defined in ISOC++ 14.6.2.1.

14.6.2.2 Type-dependent expressions
Supported as defined in ISOC++ 14.6.2.2.

14.6.2.3 Value-dependent expressions
Supported as defined in ISOC++ 14.6.2.3.

14.6.2.4 Dependent template arguments
Supported as defined in ISOC++ 14.6.2.4.

14.6.3 Non-dependent names
Supported as defined in ISOC++ 14.6.3.

14.6.4 Dependent name resolution
Supported as defined in ISOC++ 14.6.4.

- 47 -

14.6.4.1 Point of instantiation
Supported as defined in ISOC++ 14.6.4.1.

14.6.4.2 Candidate functions
Supported as defined in ISOC++ 14.6.4.2.

14.6.5 Friend names declared within a class template
Supported as defined in ISOC++ 14.6.5.

14.7 Template instantiation and specialization
Supported as defined in ISOC++ 14.7.

14.7.1 Implicit instantiation
Supported as defined in ISOC++ 14.7.1.

14.7.2 Explicit instantiation
Supported as defined in ISOC++ 14.7.2.

14.7.3 Explicit specialization
Supported as defined in ISOC++ 14.7.3.

14.8 Function template specializations
Supported as defined in ISOC++ 14.8.

14.8.1 Explicit template argument specification
Supported as defined in ISOC++ 14.8.1.

14.8.2 Template argument deduction
Supported as defined in ISOC++ 14.8.2.

14.8.2.1 Deducing template arguments from a function call
Supported as defined in ISOC++ 14.8.2.1.

14.8.2.2 Deducing template arguments taking the address of a function template
Supported as defined in ISOC++ 14.8.2.2.

14.8.2.3 Deducing conversion function template arguments
Supported as defined in ISOC++ 14.8.2.3.

14.8.2.4 Deducing template arguments from a type
Supported as defined in ISOC++ 14.8.2.4.

14.8.3 Overloaded resolution
Supported as defined in ISOC++ 14.8.3.

- 48 -

15 Libraries
This section outlines support for external C++ or SystemC libraries.

15.1 Standard C and C++ Libraries
 Library functions from C/C++ have Restricted Support. Most of them are Not Supported,
while some are Ignored as described below. Note that side effects of calls to generate the
arguments to an ignored function are Not Supported.

15.1.1 Outputting messages to stdout, stderr, cout and/or cerr
 The following constructs are Ignored:

• printf and fprintf functions, and
• using operator << to cout or cerr.

NOTE
The functions/operators called to produce the arguments to an ignored function are not part of
the ignored construct.
 printf(”x = %d”, x); // Ignored

printf(”y = %d”, ++y);
 // Side effect ++y Not Supported

cout << ”z = ” << z << endl; // Ignored

15.2 SystemC Functions and Types

15.2.1 Tracing
The following tracing constructs are Ignored:

• declaration of a variable of type sc_trace_file*,
• assignment to a variable of type sc_trace_file*,
• calls to sc_close_isdb_trace_file, sc_close_wif_trace_file, and
sc_close_vcd_trace_file,
• declaration or definition of any function named sc_trace, and
• calls to any function named sc_trace.

15.2.2 set_stack_size
Ignored.

15.2.3 sc_gen_unique_name
Ignored.

15.2.4 before_end_of_elaboration and end_of_elaboration
Not Supported.

15.2.5 start_of_simulation and end_of_simulation
Not Supported.

- 49 -

15.2.6 dont_initialize
Supported.

15.2.7 next_trigger
Not Supported.

15.2.8 print and dump
The SystemC functions print and dump are Ignored.

15.2.9 kind
Ignored.

15.2.10 sc_report_handler
The sc_report_handler class has Restricted Support. The member function
sc_report_handler::report is Ignored. All other member functions of sc_report_handler are
Not Supported.

Note
This implies that the macros sc_assert, SC_REPORT_FAIL, SC_REPORT_ERROR,
SC_REPORT_WARNING and SC_REPORT_INFO are ignored.

- 50 -

Annex A Levels of Abstraction in SystemC Design and
Introduction to High-level Synthesis (Informative)

A.1 Introduction to Abstraction Levels
How abstraction levels support design activities
The complexity of modern systems does not allow us to design such systems directly without
modeling at a number of abstraction levels. Furthermore, it is difficult to create derivative
implementations with different functions or different architectures, because functions and
architectures cannot be extracted easily from implementations for re-use.

System designers utilize a separation of function, architecture, and implementation to manage
these issues, with design activities at each level of abstraction. It is possible to distinguish
three main levels of abstraction: function level, architecture level, and implementation level.
Each level has its own standards and methodologies. The SystemC synthesizable subset
defines a standard set of language constructs for describing a System at the implementation
level.

Figure A.1 shows one representation of the abstraction levels in a System Design Flow.

 Figure A.1 Abstraction levels in a System Design Flow

The abstraction levels include:

1. The Function level in which the algorithms are defined and the system is partitioned
into communicating tasks.

2. The Architecture level in which the tasks are assigned to execution units,
communication mechanisms between the execution units are defined, and
implementation metrics, such as performance, are modeled and estimated.

Fu
nc

tio
na

l v
er

ifi
ca

tio
n

System
Specification

& Design

Virtual
Prototyping

Sy
st

em
 V

er
ifi

ca
tio

n
&

 V
al

id
at

io
n

High Level
Synthesis

High level executable spec

Specification capture

HW/SW partitioning
Architecture selection

HW model
(TLM)

Early SW
(low level)

SW (code)HW (RTL)

Compile
& Optimize

Synthesize &
Optimize

Synthesize
& Optimize

Function

Architecture
(TLM)

Implementation

HW design SW design

- 51 -

3. The Implementation level in which the precise method of implementation of the
execution units is defined.

The Implementation level is further subdivided:

A. The Implementation Behavior level in which the implementation is specified in terms
of an algorithm embodied in an implicit state machine.

B. The Implementation Register Transfer Level in which the implementation is specified
in terms of a combination of combinatorial logic and an explicit state machine.

C. The Implementation Gate Level in which the implementation is specified in terms of
technology leaf cells

A.2 Introduction to high-level synthesis
This section is focused on synthesis solutions that generate non-programmable register
transfer level (RTL) cores from high-level descriptions.

High-Level Synthesis (HLS), also known as Behavioral Synthesis, allows designing at a level
of abstraction higher than the register-transfer level by automating the translation and
optimization of a behavioral description, or a high-level model, into an RTL implementation.
It also transforms un-timed or partially timed functional models into fully timed RTL
implementations.

Because a micro-architecture is generated automatically, designers can focus on designing
and verifying the module functionality. Design teams create and verify their designs in less
time because it eliminates the need to fully schedule and allocate design resources, as done
with existing RTL methods. This behavioral design flow increases design productivity,
reduces errors, and speeds up verification. Figure A.2 shows an abstract view of a
representative design flow involving High-Level synthesis and Logic synthesis.

 Figure A.2 Abstract view of design flow involving High-Level and Logic synthesis

- 52 -

A typical high-level synthesis process incorporates a number of complex stages. This process
starts with a high-level language description of a module's behavior, including I/O actions and
computational functionality. Several algorithmic optimizations are performed to reduce the
complexity of a result and then the description is analyzed to determine the essential
operations and the dataflow dependencies between them.

The other inputs to the high-level synthesis process typically include a target technology
library and a set of directives that will influence the resulting architecture. These directives
include, for example, timing constraints used by the algorithms of a synthesis tool as they
create a cycle-by-cycle schedule of the required operations. In some flows, a set of low-level
components is characterized at a target frequency for the selected fabrication process. This
characterized library is used when allocation and binding occurs, in order to assign these
operations to specific functional units, such as adders, multipliers, comparators, etc.

Finally, a state machine is generated that will control the resulting datapath to implement the
desired functionality. The datapath and state machine outputs are RTL code optimized for use
with conventional simulation and logic synthesis or physical synthesis tools.

To be useful to system designers, SystemC-based HLS typically needs to accommodate two
different semantics of timing.

 Portions of a design are described in a time-independent manner - allowing the synthesis
tool to schedule operations for specific clock cycles.

 Portions of a design are described in a timing accurate matter - allowing the user to
specify the cycle-accurate protocol a portion of a system uses to communicate with the
rest of the design.

These two competing requirements pose challenges for verification. The SystemC language
has no constructs to distinguish where cycle-accuracy is intended and where a synthesis tool
has degrees of freedom to re-order operations. The practical implication of this is there is no
guarantee the pre-synthesis simulation of a design will match the post-synthesis simulation of
the resulting RTL. The large body of existing techniques in testbench design and verification
methodology which experienced designers use to validate functional correctness is beyond the
scope of this document.

 In practice, existing synthesis tools have adopted tool-specific methodologies for expressing
when a segment of code is intended to be treated as cycle-accurate. Standardizing how these
blocks of code should be specified is beyond the current scope of this standard, but is a fertile
area for future standardization efforts.

A.3 Vision for high-level design
Easier management of system complexity, accelerated design verification and implementation,
increased opportunity for design reuse, and a wider selection of implementation options, these
are just a few reasons why project teams are moving to high-level design. However, by
moving to the higher levels of abstraction, a design gap between HLS and RTL has come into
existence.

For each algorithm modelled at abstract level, there are numerous ways it can be realized in
hardware. However, with tight schedules and increasing complexity, there simply is not
enough time to create more than one RTL implementation by hand after an algorithm and

- 53 -

architecture choice is made. This way, alternative hardware implementation options that could
significantly impact performance, area, or power are seldom created or evaluated.

With the availability of a general-purpose language based on C++, like SystemC, and the
maturity of high-level synthesis and verification tools, high-level models can be leveraged to
help evaluate trade-offs in architectures and algorithms in ways not previously possible.

Figure A.3 shows the vision for synthesizing from architecture to RTL. Components in the
architecture are described in synthesizable SystemC and interfaced and connected using the
TLM library.

Figure A.3 The vision from architecture (TLM) to implementation (RTL)

Figure A.4 shows a possible implementation flow from Electronic System Level (ESL) down
to GDSII. Based on this diagram, a wish list of requirements (beyond the scope of this
standard) for ESL Synthesis solutions based on C/C++/SystemC can be defined:

 Automate the RTL implementation from behavioral C/C++/SystemC (TLM) models
 Support a fast design time (implementation & Verification)

– At least a 2x improvement compared to hand coded design
 Support optimization for Performance, Area, and Power

– On par or better area results for a required performance compared to hand
coded

– Automatic timing closure based on back-annotated static timing analysis
– Automatic power optimization based on dynamic power simulation

 Support the generation of behavioral SystemC TLM models with timing annotation
(LT/AT) and SystemC CA models

 Automate reuse of high-level test environment for verification of RTL implementation,
netlist, and generated SystemC TLM views

– Support of assertions
– Support for functional equivalence checking

 Support synthesis from and generation of TLM 2.0 SystemC compliant models
 Full integration of high-level synthesis methodology in a System Level Design

Environment

- 54 -

Figure A.4 Abstract view of possible implementation flow from ESL down to GDSII

A.4 Abstraction Level Details

A.4.1 Function Level
The motivation for introducing this level of abstraction is to quickly obtain a function to
determine what the system is supposed to do, without making architecture assumptions.
Hence, there is the potential to re-use functions either to create derivative functions or to
synthesize different implementations with different architectures.

An example of a view at this level is a function modelled as a process network which can be
analyzed through simulation.

At the Function Level of abstraction, two design steps can be identified:

• Algorithm Specification
• Partitioning into communicating tasks

A.4.1.1 Function Level: Algorithm Specification

In this design step, an executable functional specification of the algorithm is created (e.g., in
C/C++/Matlab code). This executable specification is used to check the validity of the
algorithm. The simulation in this design step is sequential, it has no timing information, and it

T0

- 55 -

has a single thread of control. The simulation speed is high due to lack of timing and
architecture details.

 Profiling techniques are used to obtain an initial estimate of the computational load of
the different functions and the amount of data transfer between them.

 Code inspection is used to estimate the amount of flexibility required for each of the
functions. The results of both, code inspection and profiling, are used as input for task
partitioning and, in a later stage, as input for hardware/software partitioning.

 Next to algorithm verification, the executable functional specification generated in this
step is also used as a golden reference model throughout the whole flow.

A.4.1.2 Function Level: Partitioning into communicating tasks
With the design constraints and requirements, a suitable architecture template in mind, and
the results from the previous algorithm design step, the system is partitioned into tasks that
perform processing functions and channels through which data is communicated between
these tasks.

The processes in such a network are concurrent and are connected by communication
channels. Processes produce data elements and send them along a unidirectional
communication channel where they are stored in a first-in-first-out order until the destination
process consumes them. Such a network is also referred to as a Kahn Process Network (KPN)
(Kahn, 1974).

In KPN, parallelism and communication are explicitly modeled, which is essential for the
mapping onto multi-processor systems. Another property of KPN is that an application
designer can combine processes into networks without specifying their order of execution.
This property stimulates the modular construction and reuse of applications (functional IP),
since it is easier to compose new applications using existing ones.

Using a multi-threaded simulation, the communication load on the channels and the
computation load on the tasks are analyzed. If necessary, the system can be repartitioned to
meet the constraints and requirements. Also, the functional correctness of the partitioning is
checked during the multi-threaded simulation.

To model signal processing applications as Kahn Processing Networks [5], YAPI [6] [7] can
be used. The purpose of YAPI is to enable the reuse of signal processing applications and the
mapping of signal processing applications onto heterogeneous systems that contain hardware
and software components.

YAPI has also been embedded in SystemC. YAPI embedded in SystemC is developed as a
SystemC class library with a set of rules that can be used to model stream processing
applications as a process network. As mentioned above, the model of computation in YAPI is
based on KPN.

Function level is also known as behavioral architectural-level [8] [9]]. At this level, for the
equation Y = P(X), both X and Y contain no time. As soon as any xi of X changes value, then P
computes Y at exactly the same instance. A virtual clock can be the only one or one of the xi
of X. When the virtual clock triggers the process, P computes Y based on X at exactly the
same instance.

This can be modeled in SystemC using SC_METHODs, SC_THREADs, or SC_CTHREADs.

- 56 -

Example 1 using SC_METHOD:

SC_MODULE(AddMul_2) {
sc_in< sc_uint<16> > a, b, c;

 sc_out< sc_uint<32> > result;

 void addmul_2() {
 result = a.read() + (b.read() * c.read());
 }

 SC_CTOR(AddMul_2) {
 SC_METHOD(addmul_2);
 sensitive << a << b << c;
 }
};

In the above example, the process function P is addmul_2(); the input set is X = {x1, x2, x3
}, where x1 = a, x2 = b and x3 = c; the output set is Y = {y1}, where y1 = result.

 Example 2 using SC_CTHREAD:

SC_MODULE(AddMul_3) {
 sc_in< bool > clk;
 sc_in< bool > rst;

sc_in< sc_uint<16> > a, b, c;
 sc_out< sc_uint<32> > result;

 void addmul_3() {
 result = 0;
 wait();
 while (1) {
 result = a.read() + (b.read() * c.read());
 wait();
 }
 }

 SC_CTOR(AddMul_3) {
 SC_CTHREAD(addmul_3, clk.pos());
 reset_signal_is(rst, false);

 }
};

In the above example, the process function P is the combination of void addmul_3() and
the semantics of SC_CTHREAD and reset_signal_is(). Furthermore, clk and rst ports are
identified as sensitive events, and clk is the clock port and rst the reset port. The input set
is X = {x1, x2, v1, v2, v3}, where x1 = clk, x2 = rst, v1 = a, v2 = b and v3 = c. The output set is Y
= {y1}, where y1 = result.

A.4.2 Architecture Level
The motivation for introducing this level of abstraction into a design flow is to quickly find an
efficient implementation. Efficiency can be defined in terms of power, timing, area, etc. To be
able to quickly evaluate the efficiency of alternative implementations, it is desirable to avoid

- 57 -

the effort of making them in detail. For example, the decision to base an implementation on a
message passing or a shared memory architecture leads to two alternative implementations.

Transaction Level Modeling (TLM) was developed for abstract modeling of (SoC) systems at
the architecture level, allowing efficient system exploration. Literally, a transaction is the
exchange of goods, services or funds; or a communicative action or activity involving two
parties or things that reciprocally affect or influence each other (Merriam-Webster Online
Dictionary). Both meanings have two ingredients, exchange/communication and
goods/influence.

In an electronic system, the goods or influence can be considered as the computation (goods)
or the effect of the computation (influence). There have been many discussions regarding
TLM over the years; here, the definitions, terminologies, and libraries developed by the OSCI
TLM Working Group (TLM WG) are used.

A.4.3 Transaction Level Modeling
Although TLM includes computation and communication, TLM-1 and TLM-2.0 in the
SystemC LRM only describes the communication part. In TLM-1 and TLM-2.0, a transaction
is a payload, the data structure that passed between modules. The SystemC LRM considers
the following coding styles for transaction-level modelling:

1. Un-Timed (UT): A modeling style in which there is no explicit mention of time or cycles,
but which includes concurrency and sequencing of operations. In the absence of any
explicit notion of time as such, the sequencing of operations across multiple concurrent
threads shall be accomplished using synchronization primitives such as events, mutexes,
and blocking FIFOs. Some users adopt the practice of inserting random delays into
untimed descriptions to test the robustness of their protocols, but this practice does not
change the basic characteristics of the modeling style.

2. Loosely Timed (LT): A modeling style that represents minimal timing information,
sufficient only to support the features necessary to boot an operating system and manage
multiple threads in the absence of explicit synchronization between those threads. A
loosely timed model may include timer models and a notional arbitration interval or
execution slot length. Some users adopt the practice of inserting random delays into
loosely timed descriptions to test the robustness of their protocols, but this practice does
not change the basic characteristics of the modeling style.

3. Approximately Timed (AT): A modeling style for which there exists a one-to-one
mapping between the externally observable states of the model and the states of some
corresponding detailed reference model such that the mapping preserves the sequence of
state transitions, but not their precise timing. The degree of timing accuracy is undefined.

4. Cycle Accurate (CA): A modeling style in which it is possible to predict the state of the
model in any given cycle at the external boundary of the model and, thus, establish a one-
to-one correspondence between the states of the model and the externally observable
states of a corresponding RTL model in each cycle, but which is not required to explicitly
re-evaluate the state of the entire model in every cycle or explicitly represent the state of
every boundary pin or internal register. This term is only applicable to models that have a
notion of cycles.

In this document, UT modules represent an abstraction that aligns well with the synthesizable
subset described herein. LT modules use absolute time for timing information and, thus, are
not synthesizable (e.g., it is infeasible to synthesize sc_time(10, SC_NS), which is used
to represent the latency to execute a certain function). AT modules are not synthesizable as

- 58 -

well, because states and state transitions modelled using AT are not precise in timing. The CA
modeling style is not addressed in detail in the SystemC LRM.

A.4.4 Implementation Level
This abstraction level captures the details of the interfaces and the I/O functionality, including
a full or partial specification/modelling of their timing. The communication among blocks is
carried out at the signal-level. The specification of the interface is pin-accurate and should be
preserved by synthesis for the top-level module. Implementation levels include Register-
Transfer Level (RTL), Gate Level, and Behavioral-Level. RTL and Gate Level are widely
used and have traditionally been written in hardware description languages, such as
Verilog/VHDL and SystemVerilog. The abstraction level below Gate Level is expressed in
the GDSII format. SystemC is not suitable for this abstraction level.

A.4.4.1 Implementation Gate Level
The Gate Level consists of interconnection of instantiations of technology leaf cells. The
specification is structural. The behavior of each cell is written for simulation and is generally
quite simple. For example, combinational gates are typically written in the form of concurrent
statements. Sequential gates, including registers and memories, are usually written in the
same form as it is done at the RTL level.

SystemC is not generally used to represent gate-level constructs.

A.4.4.2 Implementation RT Level
Register Transfer Level (RTL), as the name suggests, describes functions and signals from
registers to registers. The basic elements of this level are combinational and sequential
functional/logic units, registers, and signals.

An RTL module has a Finite State Machine (FSM) which describes cycle-by-cycle behavior
of the target module. The functional behavior of each state can be described inside the FSM.
This kind of FSM can be called an FSM with Datapath (FSMD). Or the functional behavior
can be described using a separate datapath which is then controlled by the FSM.

The RT level allows the specification of both structural and more behavioral constructs.

 In addition to bit-wise logic, word-level arithmetic, such as a * b can be specified
and synthesized.

 Loops with constant number of iterations can be specified. Such loops are fully
unrolled.

 An FSM can be specified in such a way that synthesis can recognize it as an FSM and
perform optimizations, such as state encoding, etc. The computation of the next-state
and the output is done with behavioral constructs, such as if-then-else and case
statements.

 An FSM, where states and transitions may contain complex logic and arithmetic
behavior (not just simple constant assignments to outputs), is constructed as an
explicit-state machine. Registers may be specified either inside or outside the explicit-
state machine.

The interface of RTL sub-blocks may be changed by synthesis (boundary optimization), but
the top-level interface is preserved. Clock, reset and enable behavior is explicitly specified.

- 59 -

Internal cycle timing of operations may be changed in limited ways (retiming) under user
control.

The verification methodology of the output from RTL synthesis against the reference RTL
specification is well defined for both combinational and sequential hardware. For instance,
IEEE Standard 1076-2004 defines this for VHDL and the same methodology is applicable for
SystemC RTL specifications.

Example:

SC_MODULE(AddMul_1) {
 sc_in< bool > clk;

sc_in< sc_uint<16> > a, b, c;
 sc_out< sc_uint<32> > result;

 void addmul_1() {
 result = a.read() + (b.read() * c.read());
 }

 SC_CTOR(AddMul_1) {
 SC_METHOD(addmul_1);
 sensitive << clk.pos();

 }
};

In the above example, P is the function void addmul_1(); X = {x1, v1, v2, v3}, where x1 =
clk, v1 = a, v2 = b and v3 = c; Y = {y1}, where y1 = result.

A.4.4.3 Implementation Behavioral-Level
The behavioral-level introduces some freedom in how operations and I/O are scheduled by
only partially constraining the cycle-by-cycle behavior of the I/O. Registers are not explicitly
defined, but instead are determined by synthesis. Storage requirements are dependent on how
operations are scheduled: registers are used to store values that are used one or more cycles
after the cycle in which they are generated. Storage of arrays may be mapped to memories or
registers.

The specification of behavior is in the form of an implicit-state machine rather than the
explicit-state machine generally used for RTL. In an implicit-state machine, there is no
explicit state variable that is used to select what behavior is executed next. Instead, the
behavior consists of a process that is sensitive to the clock and possibly a reset signal (for
asynchronous resets). The process uses language constructs, such as loops, constructs to
continue and exit loops, and constructs to specify conditional behavior (if-then-else and case
constructs) and wait statements that specify cycle timing among sets of output assignments.

The output from behavioral synthesis is a synthesizable RTL description and/or a Gate-Level
description. The verification methodology of the generated specifications against the
behavioral (source) specification is more complex (than the RTL level vs. Gate-Level
specification) since the cycle-by-cycle behavior may be changed by synthesis.

- 60 -

Annex B References

[1] "ISO/IEC 14882:2003, Programming Languages - C++," 2003.
[2] IEEE, "IEEE 1666 SystemC Standard Language Reference Manual," 2011.
[3] "ISO/IEC 14882:2011, Programming languages - C++," 2011.
[4] Sun Microsystems Inc, "What Every Computer Scientist Should Know About Floating-

Point Arithmetic," in Numerical Computation Guide, 2004.
[5] G. Kahn, "The semantics of a simple language for parallel programming," in Information

Processing, Proceedings of IFIP Congress, Stockholm, 1974.
[6] e. a. Erwin de Kock, "YAPI: Application Modeling for Signal Processsing Systems," in

Proc. of DAC, 2000.
[7] e. a. Erwin de Kock, "Proposal for Modeling Kahn Process Networks and Synchronous

Dataflow in SystemC," NXP Lab white paper.
[8] G. D. Micheli, Synthesis and Optimization of Digital Circuits, McGraw-Hill Higher

Education, 1994.
[9] D. W. Knapp, Behavioral Synthesis: Digital System Design Using the Synopsys

Behavioral Compiler, Prentice Hall, 1996.

	Introduction
	1 Overview
	1.1 Purpose
	1.2 Scope
	1.3 Terminology
	1.3.1 Base Standards
	1.3.2 Word usage
	1.3.3 Construct Categories

	1.4 Conventions
	1.5 ISOC++ Implementation Compliance (ISOC++ 1.4)
	1.5.1 Implementation-defined behavior (ISOC++ 1.3.5)
	1.5.2 Undefined behavior (ISOC++ 1.3.12)
	1.5.3 Unspecified behavior (ISOC++ 1.3.13)

	1.6 SystemC LRM Compliance
	1.6.1 Implementation-defined (SystemC LRM 3.2.1)
	1.6.2 Undefined
	1.6.3 Error

	2 Translation units
	2.1 Translation units and their analysis
	2.2 Pre-processing directives

	3 Modules
	3.1 Module definitions
	3.1.1 Selecting the top of a design hierarchy
	3.1.2 Module member specification
	3.1.3 Module declarative items
	3.1.3.1 Module special functions
	3.1.3.2 Communication between processes through module member variables
	3.1.3.3 Communication between modules
	3.1.3.4 sc_port, sc_export, sc_signal, and other channels
	3.1.3.5 Module constructor

	3.2 Deriving modules
	3.3 Module hierarchy

	4 Processes
	4.1 SC_METHOD
	4.1.1 Combinational SC_METHOD
	4.1.2 Sequential SC_METHOD
	4.1.2.1 Sequential SC_METHOD with synchronous reset
	4.1.2.2 Sequential SC_METHOD with asynchronous reset

	4.2 SC_THREAD and SC_CTHREAD
	4.2.1 Clock and Reset
	4.2.2 Thread process body

	5 Predefined channels, interface proper and ports
	5.1 Predefined Channels
	5.1.1 sc_signal
	5.1.2 Resolved Channels
	5.1.3 Other Channels

	5.2 Ports
	5.2.1 sc_in, sc_out, and sc_inout

	5.3 sc_event

	6 Types
	6.1 Fundamental Types
	6.1.1 Integer Types
	6.1.1.1 Literals
	6.1.1.2 Representation and Bit Sizes

	6.1.2 Type Conversions
	6.1.2.1 Integer Promotions
	6.1.2.2 Usual Arithmetic Conversions

	6.1.3 Operators
	6.1.4 Floating Point Types
	6.1.5 The void type

	6.2 Compound Types
	6.3 SystemC Datatypes
	6.3.1 Limited Precision Integer Types
	6.3.2 Finite Precision Integer Types
	6.3.3 Finite Precision Fixed-point Types
	6.3.4 Logic and Vector Types
	6.3.4.1 Finite Word-Length Bit Vectors (sc_bv)
	6.3.4.2 Single-Bit Logic (sc_logic) and Finite Word-Length Logic Vectors (sc_lv)

	6.3.5 Common Operators and Functions
	6.3.5.1 Bit Select Operator
	6.3.5.2 Part Select Operator
	6.3.5.3 Function concat(C1,C2) and operator,(C1,C2)
	6.3.5.4 Reduction Operators
	6.3.5.5 Arithmetic Operators
	6.3.5.6 Bitwise Complement Operator
	6.3.5.7 Bitwise Logical Operators
	6.3.5.8 Logical Negation
	6.3.5.9 Relational Operators
	6.3.5.10 Shift Operators
	6.3.5.10.1 Limited Precision Integers
	6.3.5.10.2 Finite Precision Integers
	6.3.5.10.3 Finite Precision Fixed-Point Types
	6.3.5.10.4 Finite Word-Length Vector Types

	6.3.5.11 Rotate Operators
	6.3.5.12 Explicit Conversions
	6.3.5.13 Conversion Operators
	6.3.5.14 Assignment Operators and Constructors
	6.3.5.15 String input and output
	6.3.5.16 Length
	6.3.5.17 Reversed

	7 Declarations
	7.1 Specifiers
	7.1.1 Storage class specifiers
	7.1.2 Function specifiers
	7.1.3 The typedef specifier
	7.1.4 The friend specifier
	7.1.5 Type specifiers
	Type specifiers (ISOC++ 7.1.5) have Restricted Support.
	7.1.5.1 cv-qualifiers
	7.1.5.2 Simple type specifiers
	7.1.5.3 Elaborated type specifiers

	7.1.6 Enumerations
	7.1.7 The asm declaration
	7.1.8 Linkage specifications

	8 Declarators
	8.1 Type names
	8.2 Ambiguity resolution
	8.3 Kinds of declarators
	8.3.1 Pointers
	8.3.2 References
	8.3.3 Pointers to Nonstatic Class Members
	8.3.4 Arrays
	8.3.5 Function parameters
	8.3.6 Default arguments

	8.4 Function definition
	8.5 Initializers
	8.5.1.1 Aggregates
	8.5.1.2 Character arrays
	8.5.1.3 References

	9 Expressions
	9.1 Function call
	9.2 Explicit type conversion
	9.2.1 Type conversion operators
	9.2.1.1 Dynamic cast
	9.2.1.2 Static cast
	9.2.1.3 Reinterpret cast
	9.2.1.4 Const cast

	9.2.2 Functional notation
	9.2.3 Cast notation

	9.3 typeid
	9.4 Unary Expressions and Operators
	9.4.1 Unary Operators
	9.4.2 Increment and decrement
	9.4.3 sizeof
	9.4.4 New and delete

	9.5 Pointer-to-member operators
	9.6 Multiplicative, Additive, Shift, Relational, Equality, and Assignment operators
	9.7 Bitwise and Logical AND/OR/XOR operators
	9.8 Conditional Operator
	9.9 Comma operator

	10 Statements
	10.1 Labeled statement
	10.2 Compound statement
	10.3 Selection statements
	10.3.1 The if statement
	10.3.2 The switch statement

	10.4 Iteration statements
	10.5 Jump statements
	10.5.1 The break statement
	10.5.2 The continue statement
	10.5.3 The return statement
	10.5.4 The goto statement

	10.6 Declaration statement
	10.7 Exception handling statements

	11 Namespaces
	11.1 Namespace definition
	11.1.1 Unnamed namespaces
	11.1.2 Namespace member definitions

	11.2 Namespace alias
	11.3 The using declaration
	11.4 Using directive

	12 Classes
	12.1 Class names
	12.2 Class members
	12.3 Member functions
	12.3.1 Nonstatic member functions
	12.3.2 The this pointer

	12.4 Static members
	12.4.1 Static member functions
	12.4.2 Static data members

	12.5 Unions
	12.6 Bit-fields
	12.7 Nested class declarations
	12.8 Local class declarations
	12.9 Nested type names
	12.10 Derived classes
	12.10.1 Multiple base classes
	12.10.2 Member name lookup
	12.10.3 Virtual functions
	12.10.4 Abstract classes

	12.11 Member access control
	12.11.1 Access specifiers
	12.11.2 Accessibility of base classes and base class members
	12.11.3 Access declarations
	12.11.4 Friends
	12.11.5 Protected member access
	12.11.6 Access to virtual functions
	12.11.7 Multiple access
	12.11.8 Nested classes

	12.12 Special member functions
	12.12.1 Constructors
	12.12.2 Temporary objects
	12.12.3 Conversions
	12.12.3.1 Conversion by constructor
	12.12.3.2 Conversion functions

	12.12.4 Destructors
	12.12.5 Free store
	12.12.6 Initialization
	12.12.6.1 Explicit initialization
	12.12.6.2 Initializing bases and members

	12.12.7 Copying class objects

	13 Overloading
	13.1 Overloadable declarations
	13.2 Declaration matching
	13.3 Overload resolution
	13.3.1 Candidate functions and argument lists
	13.3.1.1 Function call syntax
	13.3.1.1.1 Call to named function
	13.3.1.1.2 Call to object of class type

	13.3.1.2 Operators in expressions
	13.3.1.3 Initialization by constructor
	13.3.1.4 Copy-initialization of class by user-defined conversion
	13.3.1.5 Initialization by conversion function
	13.3.1.6 Initialization by conversion function for direct reference binding

	13.3.2 Viable functions
	13.3.3 Best Viable Function
	13.3.3.1 Implicit conversion sequences
	13.3.3.1.1 Standard conversion sequences
	13.3.3.1.2 User-defined conversion sequences
	13.3.3.1.3 Ellipsis conversion sequences
	13.3.3.1.4 Reference Binding

	13.3.3.2 Ranking implicit conversion sequences

	13.4 Address of overloaded function
	13.5 Overloaded operators
	13.5.1 Unary operators
	13.5.2 Binary operators
	13.5.3 Assignment
	13.5.4 Function call
	13.5.5 Subscripting
	13.5.6 Class member access
	13.5.7 Increment and decrement

	13.6 Built-in operators

	14 Templates
	14.1 Template parameters
	14.2 Names of template specializations
	14.3 Template arguments
	14.3.1 Template type arguments
	14.3.2 Template non-type arguments
	14.3.3 Template template arguments

	14.4 Type equivalence
	14.5 Template declarations
	14.5.1 Class Templates
	14.5.1.1 Member functions of class templates
	14.5.1.2 Member classes of class templates
	14.5.1.3 Static data members of class templates

	14.5.2 Member templates
	14.5.3 Friends
	14.5.4 Class template partial specializations
	14.5.4.1 Matching of class template partial specializations
	14.5.4.2 Partial ordering of class template specializations
	14.5.4.3 Members of class template specializations

	14.5.5 Function templates
	14.5.5.1 Function template overloading
	14.5.5.2 Partial ordering of function templates

	14.6 Name resolution
	14.6.1 Locally declared names
	14.6.2 Dependent names
	14.6.2.1 Dependent types
	14.6.2.2 Type-dependent expressions
	14.6.2.3 Value-dependent expressions
	14.6.2.4 Dependent template arguments

	14.6.3 Non-dependent names
	14.6.4 Dependent name resolution
	14.6.4.1 Point of instantiation
	14.6.4.2 Candidate functions

	14.6.5 Friend names declared within a class template

	14.7 Template instantiation and specialization
	14.7.1 Implicit instantiation
	14.7.2 Explicit instantiation
	14.7.3 Explicit specialization

	14.8 Function template specializations
	14.8.1 Explicit template argument specification
	14.8.2 Template argument deduction
	14.8.2.1 Deducing template arguments from a function call
	14.8.2.2 Deducing template arguments taking the address of a function template
	14.8.2.3 Deducing conversion function template arguments
	14.8.2.4 Deducing template arguments from a type

	14.8.3 Overloaded resolution

	15 Libraries
	15.1 Standard C and C++ Libraries
	15.1.1 Outputting messages to stdout, stderr, cout and/or cerr

	15.2 SystemC Functions and Types
	15.2.1 Tracing
	15.2.2 set_stack_size
	15.2.3 sc_gen_unique_name
	15.2.4 before_end_of_elaboration and end_of_elaboration
	15.2.5 start_of_simulation and end_of_simulation
	15.2.6 dont_initialize
	15.2.7 next_trigger
	15.2.8 print and dump
	15.2.9 kind
	15.2.10 sc_report_handler

	Annex A Levels of Abstraction in SystemC Design and Introduction to High-level Synthesis (Informative)
	A.1 Introduction to Abstraction Levels
	A.2 Introduction to high-level synthesis
	A.3 Vision for high-level design
	A.4 Abstraction Level Details
	A.4.1 Function Level
	A.4.1.1 Function Level: Algorithm Specification
	A.4.1.2 Function Level: Partitioning into communicating tasks
	SC_MODULE(AddMul_2) {
	sc_in< sc_uint<16> > a, b, c;
	sc_out< sc_uint<32> > result;
	void addmul_2() {
	result = a.read() + (b.read() * c.read());
	}
	SC_CTOR(AddMul_2) {
	SC_METHOD(addmul_2);
	sensitive << a << b << c;
	}
	};
	SC_MODULE(AddMul_3) {
	sc_in< bool > clk;
	sc_in< bool > rst;
	sc_in< sc_uint<16> > a, b, c;
	sc_out< sc_uint<32> > result;
	void addmul_3() {
	result = 0;
	wait();
	while (1) {
	result = a.read() + (b.read() * c.read());
	wait();
	}
	}
	SC_CTOR(AddMul_3) {
	SC_CTHREAD(addmul_3, clk.pos());
	reset_signal_is(rst, false);
	}
	};

	A.4.2 Architecture Level
	A.4.3 Transaction Level Modeling
	A.4.4 Implementation Level
	A.4.4.1 Implementation Gate Level
	A.4.4.2 Implementation RT Level
	SC_MODULE(AddMul_1) {
	sc_in< bool > clk;
	sc_in< sc_uint<16> > a, b, c;
	sc_out< sc_uint<32> > result;
	void addmul_1() {
	result = a.read() + (b.read() * c.read());
	}
	SC_CTOR(AddMul_1) {
	SC_METHOD(addmul_1);
	sensitive << clk.pos();
	}
	};
	In the above example, P is the function void addmul_1(); X = {x1, v1, v2, v3}, where x1 = clk, v1 = a, v2 = b and v3 = c; Y = {y1}, where y1 = result.

	A.4.4.3 Implementation Behavioral-Level

	Annex B References

